

- R/V KNORR will be retired from service by the Navy in 2014
- Initial WHOI study on Long Core (LC) re-positioning and discussions with FIC in March 2011
- Determined that LANSGETH would be the best option for accommodating the LC for the following reasons:
 - Good alignment with other geophysical work on *LANGSETH*
 - Potential to increase LANGSETH utilization
 - Ability to accommodate the longest possible LC length on the starboard main deck for available platforms.
 - No negative impact on remaining general-purpose, global ships
- Detailed design study for LANGSETH (through LDEO) to further refine the findings of the initial WHOI study.

LANGSETH's ability to safely and effectively operate as a general-purpose platform proven in 2012:

- Line Islands coring cruise (Spring 2012/Lynch-Stieglitz)
- JASON cruise (Summer 2012/Tivey)

Phase II LC Study Boundary Conditions

- No negative impact on existing seismic capability
- Aligned with broader LANGSETH winch replacement plan
- No reduction in fuel capacity
- No further tank restrictions (significant already)
- If possible, use LC system without having to de-mob seismic equipment.

Findings from Phase II Study

- Trim, stability and Load Line are the limiting factors for LANGSETH – particularly aft trim and damage stability.
- Two solutions investigated:
 - Remove OBS deck and mammal tower; exchange LC and seismic gear
 - Install sponsons
- Based on initial boundary conditions, NSF believes the best solution is to install sponsons
- Estimated Cost: \$6.1M (Probably Low!)

Long Core Repositioning

FIC and UNOLS Meetings – October 2012

Sponsons

Pro's:

- Able to accommodate BOTH Long Core and seismic equipment simultaneously
- Eliminates tanks restrictions for stability
- More fuel carried on departure (greater endurance)
- Solution to wet decks
- Con's:
 - Some loss in speed and/or increase in fuel consumption (requires further investigation)
 - Higher cost

Other Long Core Costs

- Long Core Technical Support is funded through NSF Technical Services (~\$<u>18K/day at sea</u>; \$1.4M in 2010 for 77 days)
- Long Core LHS components are funded through the East Coast Winch Pool - "Hot Stand-by" Status
 - 2009 = ~<u>\$500K</u> in required up-grades & repairs
 - 2010 & 2011 = ~<u>\$50K</u>
 - 2012 = <u>\$0</u>

Long Core Repositioning

FIC and UNOLS Meetings – October 2012

Question to the Science Community

- UNOLS-hosted Webinar?
 - Past and potential Science Users
 - Conduct prior to the end of 2012

Topics/Questions:

- What is best model for using the LC in the future (pre/post 2014)?
- Enough science need for LC capability to justify repositioning the system to another ship?
 - Six (6) LC cruises funded in 2009 & 2010
 - One (1) LC cruise proposed and none funded in 2011 & 2012
- How important is it that the US academic fleet maintain long coring capability?
- Are there reasonable alternatives to the LC? (R/V MARION DuFRESNE)
- Foreign use of US LC?

Long Core Repositioning

FIC and UNOLS Meetings – October 2012

Total STRs Requesting JPC, Long Core and OSU Coring Facility (2008-2014)

Request Year	ł	JPC	Long Core	OSU Coring
2008				1
20	09		1	3
20	10	2	5	7
20	11	3		6
20	12	5	1	22
20	13	6	1	13
20	14	2	1	1
Grand Total		18	9	53

