Nereus

Several Cruises either funded or Proposed:

- Shank
- German
- Wheat
- Fryer

Testing real-time control via Optical Modem this Fall

Nereid UI: Under Ice Light-Tethered ROV

Andrew Bowen¹, Dana R. Yoerger¹, Christopher German² James C. Kinsey¹, Louis L. Whitcomb^{1, 3}, Larry Mayer^{1,4}

¹Department of Applied Ocean Physics and Engineering ²Department of Geology and Geophysics Woods Hole Oceanographic Institution ³Laboratory for Computational Sensing and Robotics Johns Hopkins University ⁴Center for Coastal and Ocean Mapping University of New Hampshire

Antecedent Tech: Nereus 11 km HROV

The Under-Ice Scientific Imperative

- Near-Ice Inspection and Mapping
- Boundary Layer Investigations
- Grounding Line Inspection
- Sediment Sampling
- Ice Shelf Cavity Physical Oceanographic Mapping
- Instrument Emplacement*

Problem: Conventionally Tethered ROV Operations from Icebreaker in Permanent Moving Ice

Icebreaker Constrained to Move with Moving Ice Pack

5.5

Steel Armored Cable

Depressor/Garage

ROV Footprint of Operations: Small (~500 m) Under Ship, Moving with Ice

Conventional ROV ~

Solution: Light-Tethered Nereid Operations from Icebreaker In Permanent Moving Ice

Steel Armored Cable

A SIN

Depressor/Garage

Light Fiber-Optic Tether

PROV Footprint of Operations:
Large (~20 km) and Decoupled
From Ship

PROV Concept of Operations

Mission:

- Penetrate under **fixed ice** up to 20 km as a tethered vehicle while supporting sensing and sampling in close proximity to the under-ice surface
- Return safely to the ship

Notional Concept of Operations: Install acoustic Nav/Comms as required near ice-edge Deploy from yessel at ice edge

- Deploy from vessel at ice edge as tethered system
- Transit to ice-edge and begin survey activities under-ice to the maximum range of the tether.
- Complete mission and return to the vessel as an AUV and recover

onboard in open water

Nereid UI Capabilities

- Exploration
 - Real time visualization
 - Immediate Re-tasking
 - 20 km standoff
- Maneuverability
 - Close inspection
 - Precision access to under-ice boundary layer
- Future manipulation and sample retrieval capability

Design Parameters

- Bathymetry -> Depth rating
- Ice Draft -> Maneuverability/Sensing
- Water column structure -> Need for, and capacity of VBS
- Circulation and Tides -> Minimum speed
- Sea-Ice and Sea State -> LaRS complexity
- Phenomena -> Special design considerations
- State of Knowledge -> Conservatism in design
- Logistics -> Special design considerations, field-planning
- Regions Studied: Antarctic Ice Shelves Greenland Glaciers
- Assumptions: Ship-based, open-water launch/recovery, sub-type for through-ice deployment

Design Constraints: Antarctica

- Bathymetry -> Depth rating: 2000 m
- Ice Draft -> Maneuverability/Sensing: mission-driven/??
- Water column structure -> Need for, and capacity of VBS: mission-driven, potential for creative solutions
- Circulation and Tides -> Minimum speed: 0.5 m/s
- Sea-Ice and Sea State -> LaRS complexity: simple, AUV-like
- Phenomena -> Special design considerations: minimize entrained volume, thermally couple as much as possible, detect ?, pre-launch washdown
- State of Knowledge -> Conservatism in design: reliability-driven
- Logistics -> Special design considerations: What can be learned from small, proxy vehicles?

Supercooled Water and Frazil Ice

 Formed in supercooled water, 0.01-0.03 C below freezing: polynyas, water-layer interfaces, glacial interfaces, brinicles

Grease

Figure 1 Photograph through crossed polaroids of a suspended solution of frazil-ice crystals; the photograph covers 25 mm in the vertical (from Martin & Kauffman 1981).

http://www.bbc.co.uk/nature/15835017

Concepts

Conventional

Flatfish

Crab

Specifications	Range	20 km horizontal excursion
	Air Weight	1800 kg
	Denth Rating	1000 kg
	Battery	16 kWhr lithium ion
Nevigation	Inortial	Dhing INS
		I = 1000 m mms = 1000 m mms
	Acoustic	LF 1000 m range up/down altimetry;
		up/down ADCP/DVL; LF (3.5 kHz)
		homing; imaging sonar for obstacle
		avoidance
Communication	Tether	Fiber-optic Gb Ethernet, 20 km
	Acoustic	LF (3 kHz) 20-300 bps for ship to
		vehicle; HF (10-30 kHz) 300 bps for
		vehicle to sensor; vehicle to vehicle
Imaging	Acoustic	Reson 725 multibeam or Mesotech 675
		profiling (upward-looking)
	Optical	Real-time color HD video; high
	1	resolution digital camera: LED lighting
Chemical/Physical		Seabird CTD; pH; micro-structure
Sensors		probes on deployable sonde
Biological Sensors		Optical backscatter; Photosynthetically
		Active Radiation (PAR); Chlorophyll;
		Turbidity; Dissolved Oxygen
Auxiliary payload allowance		20 kg; 500 Wh

Design for Reliability/ Fault-Tolerant Control/Design

ABE and Sentry failures in 350 dives

Come-Home Capability

- Act upon loss of tether
- Timeout before Bailout
- Standown
- Home Acoustically
- Breadcrumbs
- Deadman Initiation
- Constant Depth
- Top-Follow
- Bottom-Follow
- Visualize Bailout
- Recall Election

Conclusions

- More detailed exploration under permanent fixed ice will be enhanced by the Nereid Under Ice vehicle and lead to important new knowledge difficult to gather with autonomous systems having limited bandwidth communications
- Both operational and scientific techniques developed during this project should be of interest to those contemplating missions on other planets
- Teaming of human explorers to robotic tools over high bandwidth links promises most efficient of resources

