

The New 4-Strand Light-Weight Torque-Balanced Hybrid Rope For Offshore Winching Applications

Update on the latest product development efforts for the 4-strand hybrid rope at WireCo

Presented by: Bamdad Pourladian, Ph.D. Director Product Development

The Cross-Section of the 4-Strand Hybrid Rope

MACWHYTE oceanographic ropes.

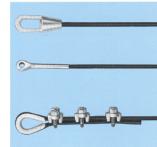
Proven products in the toughest conditions

NILSPIN was engineered specifically for underwater applications. With its phenomenal resistance to kinking, corrosion, abrasion and fatigue, NILSPIN is a significant improvement over regular 3x19 oceanographic ropes.

Following the success of our plastic impregnated and coated SPACE-LAY wire rope on long and short term buoy implants, our engineers have designed the ideal underwater rope combining the unique antikink and corrosion resisting properties of regular SPACE-LAY with outstanding anti-rotational characteristics, high yield strength, low stretch and low weight in water.

NILSPIN

NILSPIN can help you achieve a dramatic increase in service life


- · Highly resistant to kinking
- · Excellent strength/weight ratio in water
- · Superior resistance to corrosion
- Will not peel—in the patented SPACE-LAY design, outer coating is an integral part of rope
- Effective impregnation forms water block—in event of accidental damage to coating
- Smooth surface reduces wear on sheaves and equipment
- Made from galvanized wire rope

Rope	0.D. of	Minimum	Approx. Wt. Lbs./100		
Diameter Inches	Covering Inches	Breaking Force	In Air	In Sea Water	
1/8	3/16	1,870	3.50	2.27	
5/32	7/32	2,840	5.23	3.56	
3/16	1/4	4,000	7.37	5.19	
1/4	5/16	6,650	12.9	9.46	
5/16	7/16	9,900	21.0	4.3	
3/8	1/2	13,900	30.0	21.3	
7/16	9/16	18,800	39.2	28.1	
1/2	21/32	24,400	51.7	36.7	
9/16	23/32	30,700	62.8	44.8	
5/8	25/32	37,700	77.5	56.2	
3/4	15/16	53,900	113.0	82.7	

(Special 3x19 SPACE-LAY construction)

END FITTINGS AND SEALING

These suggested end fittings and sealing are subject to specific environmental stresses. Consultation on end terminals and their relative efficiencies is recommended.

HOT SOCKETS—Remove plastic by rotary brushing, making sure plastic remains intact where it passes into socket throat. Attach in usual manner.

SWAGED FITTINGS—Factory installation recommended. If sealing is necessary, a plastic tape can be factory applied.

WIRE ROPE CLIPS—Use one more than recommended for bare rope. Retighten after load has been applied and inspect periodically for tightness and plastic condition. If corrosive conditions at the fittings are severe, another type of terminal should be used. There is no known effective seal to prevent damage that can be caused where the clips' pressure bears against the plastic. Thimble in eye is recommended.

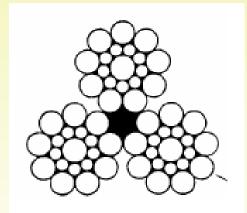
TORQUE-BALANCED^{**}

When you need higher strength and performance in wire rope.

It's non-twisting.

Torque-Balanced wire rope resists rotation. At loads approaching the elastic limit—75% of rope breaking load—tests show rotation to be less than 1° per foot of rope length. Even when there is a sudden release of load, Torque-Balanced wire ropes will not kink or form loops and hockles, as in conventional 6-strand wire ropes. Torque-Balanced wire rope will give you better and longer service life free of the problems associated with conventional wire ropes in undersea operations.

It's strong.


The elastic limit of Torque-Balanced wire rope is 75% of normal rope breaking load, compared to approximately 50% for 6-strand ropes. The importance is that the payload of a Torque-Balanced wire rope, at the elastic limit, is 50% greater than that of an equal strength 6-strand rope with no difference in diameter. Additionally, since a Torque-Balanced wire rope weighs less (about 10%) than a conventional 6-strand rope of the same size and strength, it has a much higher strength to weight ratio.

Specify: Bright, Galvanized or Jacketed wire rope.

Size Inches	Construction	Weight in Air Lbs/Ft	Approx. Elastic Limit Lbs	<mark>Minimum</mark> Breaking Force Lbs	0.2% Yield Strength Lbs	Maximum Length Feet
8/16 ./4 5/16 8/8 7/16	3x19 Seale 3x19 Seale 3x19 Seale 3x19 Seale 3x19 Seale 3x19 Seale	.0586 .0997 .153 .220 .304	3,000 5,036 7,725 11,100 15,000	4,000 6.750 10.300 14,800 20,000	3,500 5,900 9,100 13,000 17,600	50,000 45,000 30,000 50,000 42,000
1/2	3x19 Seale	.392	19,275	25,700	22,600	98,000
9/16	3x19 Seale	.492	24,375	32,500	28,600	77,000
/8	3x19 Seale	.602	30,225	40,300	35,500	62,000
/4	3x19 Seale	.879	43,350	57,800	50,900	43,000
/8	3x19 Seale	1.21	58,500	78,000	68,600	32,000
-1/8	3x19 Seale	1.56	75,450	100,600	88,500	24,000
	3x19 Seale	1.96	93,000	124,000	109,000	19,000
/2	3x41 Seale FW	.417	19,275	25,700	22,600	98,000
/16	3x41 Seale FW	.517	24,375	32,500	28,600	77,000
/8	3x41 Seale FW	.631	30,225	40,300	35,500	62,000
/4	3x46 Seale FW	.903	43,350	57,800	50,900	43,000
/8	3x46 Seale FW	1.27	58,500	78,000	68,600	32,000
-1/8 -1/4 -3/8 -1/2	3x46 Seale FW 3x46 Seale FW 3x46 Seale FW 3x46 Seale FW 3x46 Seale FW 3x46 Seale FW	1.64 2.07 2.60 3.10 3.69	75,450 93,000 118,500 141,000 166,500	100,600 124,000 158,000 188,000 222,000	88,500 109,000 139,000 165,000 195,000	24,000 19,000 15,500 12,900 10,800

The cross-section of the 3X19 all steel rope

The strength-toweight ratio for 9/16" 3X19 is 66,057 pounds/(lbs/ft)

3x19

United States Patent [19]

Adams et al.

[21] Appl. No.: 717,310

[22] Filed:

Reissue of:

521

[64] Patent No.:

Issued: Appl. No.:

Filed:

Re. 29,537 [11] E [45] Reissued Feb. 14, 1978

A. Lucht, Orange, both of Conn.

[75] Inventors: William E. Adams, Hamden; Wilbert

[73] Assignee: United States Steel Corporation, Pittsburgh, Pa.

Aug. 24, 1976

Related U.S. Patent Documents

3,374,619

545,726

[51] Int. Cl.² D07B 1/06; D02J 13/00

Mar. 26, 1968

Apr. 27, 1966

[58] Field of Search 57/139, 144, 145, 146,

57/147, 148, 149, 152

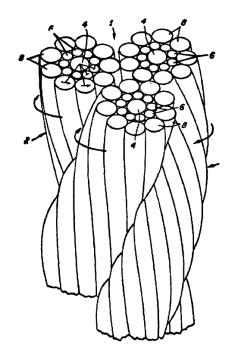
[54] TORQUE BALANCED ROPE [56]

References Cited

U.S. PATENT DOCUMENTS

952.161	3/1910	Whyte	57/147
1,429,529	9/1922	Pyburn	
1,885,821	11/1932	Green	
2,147,118	2/1939	Ellsworth et al.	57/147
2,372,142	3/1945	Warren	57/147
2,399,157	4/1946	Warren	57/147
3,035,403	5/1962	Grimes et al.	57/145
3,092,956	6/1963	Naysmith 57	/147 X
3,201,930	8/1965	Stirling	57/144

FOREIGN PATENT DOCUMENTS


256,674	12/1966	Austria.
170,415	7/1934	Switzerland.

Primary Examiner-Donald Watkins Attorney, Agent, or Firm-Forest C. Sexton

ABSTRACT [57]

A torque balanced regular lay wire rope having from three to six strands spiraled together such that the angle of lay of the outer wires in each strand is at least two times greater than the angle of lay of the strands in the rope and said rope is in a stress relieved condition.

9 Claims, 2 Drawing Figures

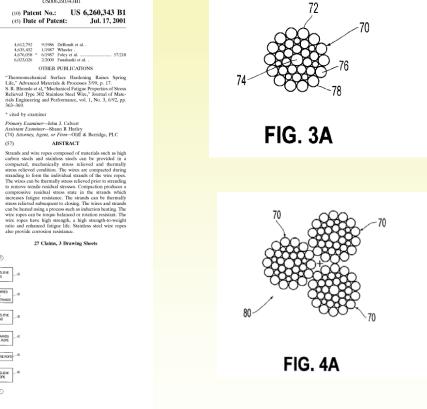
One way to increase strength-to-weight ratio is by using compacted strand ropes

* cited by examiner

(57)

D02G 3/02

..... 57/200: 57/13: 57/15:


145, 166, 161; 174/113

USS RELIEV WRES

RESS RELIEVE STRAND

CLOSE STRANDS INTO WIRE ROPE MPACT WIRE ROPE

TRESS RELIEVE WIRE ROPE

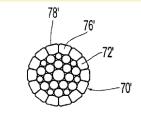
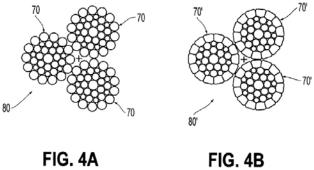



FIG. 3B

(12) United States Patent

(54) HIGH-STRENGTH, FATIGUE RESISTANT STRANDS AND WIRE ROPES

(75) Inventor: Bamdad Pourladian, St. Joseph, MO (US)

(73) Assignce: Wire Rope Corporation of America, Incorporated, St. Joseph, MO (US) (*) Notice: Subject to any disclaimer, the term of this

Related U.S. Application Data (60) Provisional application No. 60/083,800, filed on May 1, 1998.

> References Cited U.S. PATENT DOCUMENTS

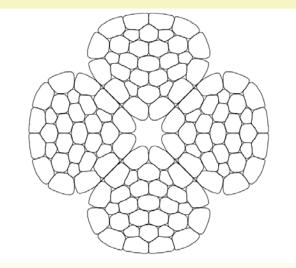
Re. 29,537 * 2/1978 Adams

atent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

57/139; 57/201; 57/206; 57/207; 57/210; 57/214; 57/248; 57/253; 174/113 (58) Field of Search ______ 57/13, 15, 139, 57/200, 201, 206, 207, 210, 214, 248, 253,

Pourladian

(21) Appl. No.: 09/301,069


(51) Int. Cl.7

(52) U.S. CL .

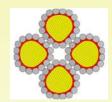
(56)

(22) Filed: Apr. 28, 1999

The cross-section of the compacted strand 4-strand rope (XLT4)

4X31 XLT4

The Strength-to-Weight ratio for 9/16" 4X31 is 68,615 pounds/(lbs/ft)


MBF = 44,600 pounds (37% higher than the required 32,500 pounds)

Wt/ft = 0.650 lbs/ft(32% heavier than 3X19)

The 4 X 16 hybrid rope

Rope Construction	Required MBF	Weight in air	% Reduction of weight compared to 3 X 19 all steel rope
9//16" 3X19 (all steel)	32,500 pounds	0.492 lbs/ft	0%
Torque-Balanced			
9/16" 4X16 Hybrid	32,500 pounds	0.346 lbs/ft	30%
Torque-Balanced			

A typical winch operating with a 3X19 all steel wire rope

What properties are most desirable for this application?

- Higher strength-to-weight ratio
- Axial stiffness measured as EA
- Torque-Balance as measured by torque factor and turns per 1000d
- ▶ Better bending fatigue resistance? What D/d? How many bends per year?
- Axial tension-tension fatigue? What maximum and minimum loads and how many cycles per year?
- Multilayer winding (MLW) crush-resistance as well as fatigue-resistance?

FINAL REPORT

on

PERFORMACE TESTS OF 3 X 19 WIRE ROPES MANUFACTURED BY WIRE ROPE CORPORATION OF AMERICA

to

Woods Hole Oceanographic Institution

Purchase Order K109323

30 November 2005

Report Number FR-2967

by

Sarah A. Kelley, Frank Lee, and Philip T. Gibson

TMT Laboratories Tension Member Technology 5721 Research Drive Huntington Beach, CA 92649-1616 714-898-5641 Fax: 714-893-1925 www.tmtlabs.com

FINAL REPORT

on

PERFORMANCE TESTS OF HYBRID XLT4 WIRE ROPE

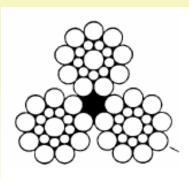
to

WireCo WorldGroup

Purchase Order 94469

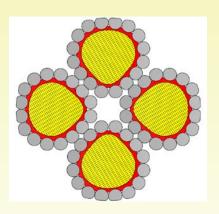
March 24, 2012

Report Number FR-3592


by

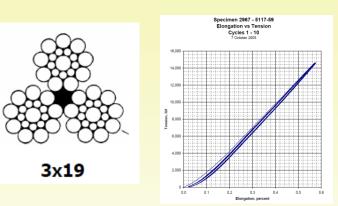
Philip T. Gibson and Henry A. Hobus

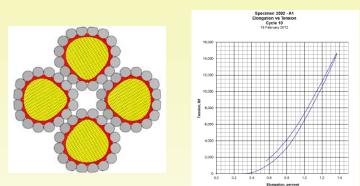
TMT Laboratories Tension Member Technology 5721 Research Drive Huntington Beach, CA 92649-1616 714-898-5641 Fax: 714-893-1925 www.tmtlabs.com



Strength-to-weight ratio comparison

3x19


The strength-to-weight ratio for 9/16" 3X19 is 66,057 pounds/(lbs/ft)


The strength-to-weight ratio for 9/16" 4 X16 hybrid rope is 93,930 pounds/(lbs/ft)

Axial stiffness comparison

The EA for 9/16" 3X19 is 2,857,143 pounds)/(in/in) Measured between 3,000 and 13,000 pounds

The EA for 9/16" 4 X16 hybrid rope is **1,904,762 (pounds)/(in/in)**

Measured between 3,000 and 13,000 pounds

Torque-Factor comparison

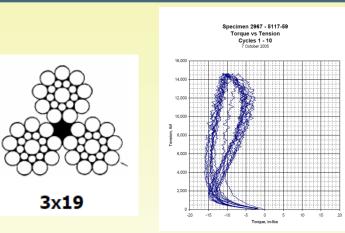
The following is a formula that is used to calculate the induced torque in a wire rope under tensile load:

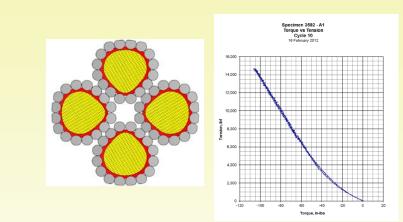
 $T = k \cdot d \cdot F$

where:

T = Induced torque (N.m) or (ft-lbs) **k** = Torque Factor (Dimensionless) d = Rope diameter (m) or (ft) F = Tensile load (N) or (lbs)

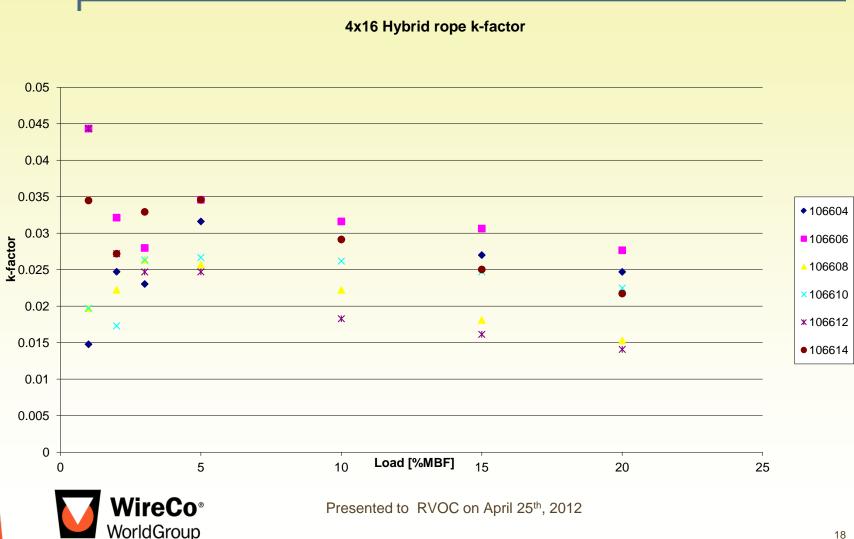
Typical Torque-Factor (k) values


Typical Torque-Factor (k) values measured at 20%MBF for various wire ropes are as follows:


6-Strand IWRC ropes	k = 0.08
6-Strand Fiber Core ropes	k = 0.09
8-Strand IWRC Regular Lay	k = 0.10

19X7 rotation-resistant ropek = 0.04535 X 7 rotation-resistant ropesk = 0.005 to 0.02XLT4 crane ropesk = 0.02 to 0.025

Torque-Factor (k) comparison



The k value for 9/16" 3X19 rope is **0.002** Measured at 20% MBF The k value for 9/16" 4 X16 hybrid rope is **0.016** Measured at 20% MBF

Torque-Factor (k) was measured for 6 different experimental hybrid rope prototypes also in WireCo's laboratory in Germany

Typical Torque-Factor (k) values

Typical Torque-Factor (k) values measured at 20%MBF for various wire ropes are as follows:

6-Strand IWRC ropes	k = 0.08
6-Strand Fiber Core ropes	k = 0.09
8-Strand IWRC Regular Lay	k = 0.10

19X7 rotation-resistant ropek = 0.04535 X 7 rotation-resistant ropesk = 0.005 to 0.02XLT4 crane ropesk = 0.02 to 0.025

Rotation under tension load comparison- TMT's test setup

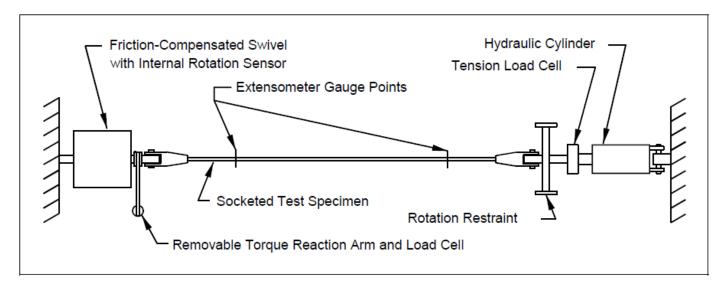
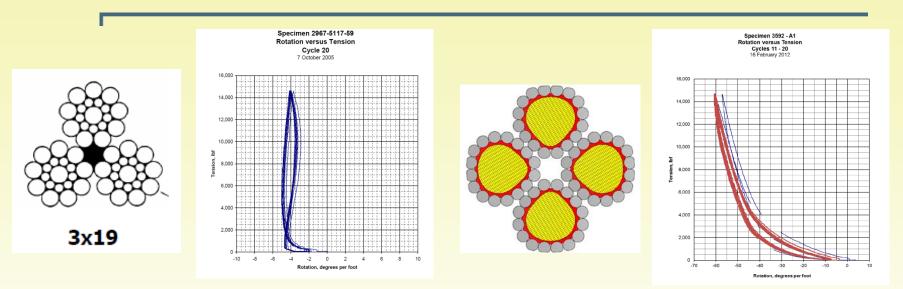
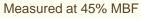



FIGURE 1. TETR TEST APPARATUS



Rotation under tension load comparison- TMT measurements

The rotation for 9/16" 3X19 rope is 0.26 turns per 1000d

The **rotation** for 9/16" 4 X16 hybrid rope is **7 turns per 1000d** Measured at 45% MBF

WireCo[®]

WorldGroup

Rotation under tension load - ISO standard 21669 test procedure

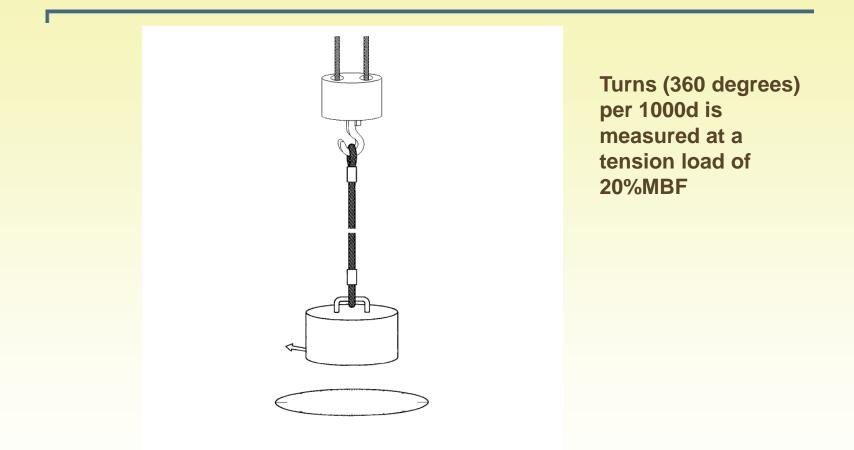


Figure 1 — Typical method of securing a test piece at the upper end

Cyclic Bend Over Sheave (CBOS) fatigue test- TMT's test setup

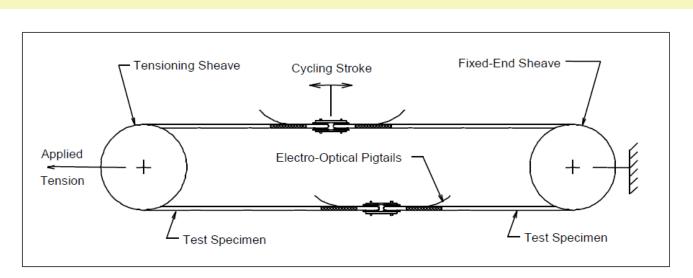


FIGURE 2. CBOS FATIGUE TEST APPARATUS

Cyclic Bend Over Sheave (CBOS) fatigue test- TMT's test setup

TABLE 4. TEST SHEAVES

d	TD	PD		GD
Nominal Rope	Sheave Tread	Sheave Pitch		Sheave Groove
Diameter, inch	Diameter, inches	Diameter, inches	PD/d	Diameter, inch
9/16	16.312	16.875	30	0.590

Cyclic Bend Over Sheave (CBOS) fatigue test comparison- TMT's test results

TABLE 5. CYCLIC BEND OVER SHEAVE TEST SUMMARY

	TMT Sample Number	Tension, pounds	Cycling Stroke, inches	Bend Cycles Completed Before Break	Location of Break
3x19	64	13,000	48	5,242	1 Strand Broke in the DBZ
	A4	13,000	48	7,630	1 Strand Broke in the DBZ
00					

Cyclic Bend Over Sheave (CBOS) fatigue test- ongoing reverse-bend-fatigue (RBF) tests

Cyclic Bend Over Sheave (CBOS) fatigue test- ongoing simple bend fatigue tests

Cyclic Bend Over Sheave (CBOS) fatigue test- ongoing simple bend fatigue tests

Test conditions: D/d = 20 Applied tension = 20%MBF

Rope lubrication: light oil to dry

Bending cycles to removal criteria = **6,400**

Remaining strength after removal = **95%MBF**

Bending cycles to complete failure = **18,476**

Tension-tension fatigue test comparison- TMT's test results

TABLE 6: CYCLIC TENSION TEST SUMMARY

	TMT Sample Number	Tension, pounds	Load Cycles Completed	Rope Condition After Test Completion
3x19	69	50 - 13,000	22,573	Broke at the Nose of a Termination
7	A3	50 - 13,000	12,163	One strand broken at nose of socket
· ·	A7	50 - 1 <mark>3</mark> ,000	10,368	Near nose of socket

Multilayer winding (MLW) tests at University of Stuttgart

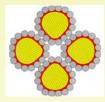
A 500 ft experimental length of 16mm hybrid 4-strand rope has been scheduled

- ► MLW tests will be conducted at the University of Stuttgart in Germany
- What other properties should be evaluated and optimized?

End attachments for the 4-strand hybrid rope

The advantages of the 4-strand hybrid hoist rope

- Higher strength-to-weight ratio: A significant reduction in rope weight while maintaining a high strength.
- Better bending fatigue resistance than 3 X 19
- The first experimental version of 4-strand rope has shown a reasonably good "torque-factor" values (k value lower than 0.02)



Next steps

- Additional tests are ongoing in order to fine tune rotation and torque factor properties
- Complete the RBF tests
- Test the effect of various lubricants on the bending fatigue performance
- MLW tests will be conducted on a 16mm experimental production run of 4X16 hybrid rope
- A short experimental length of 3-strand hybrid rope will be produced and tested for improved rotational properties
- What sort of field trials can be conducted? What length of rope may be needed?

Thank you very much for your attention! Any questions?

