

Introduction to Ship Radiated Noise

UNOLS Fleet Improvement Committee 8 March 2011

Dr. Chris Barber ARL Acoustics Division

Ship Radiated Noise

- Why care?
 - ICES, marine mammals
 - Impact on Shipboard Mission Systems
 - Mutual Interference
 - Environmental Impact Assessment
- What makes noise?
 - Propellers
 - Machinery
 - Transient sources
- How do you measure it ?
 - Acoustic ranges
 - Shallow water / short range measurements
- How do you model or predict it?
 - Computational, empirical and hybrid methods
 - Machinery Noise Prediction Models

From Mitson, "UNDERWATER NOISE OF RESEARCH VESSELS, 1995

100

Definitions

- Radiated Noise
 - Ship noise that is transmitted into the water and can be detected by off-board receivers
 - Typically reported as One Third octave (OTO) Band
 - Narrowband (1 HZ) data used to characterize machinery tonals
- Radiated Noise Source Level
 - Equivalent simple source (omnidirectional monopole) level
 SL dB re 1 µPa @ 1m
 - Back-propagated to 1m assuming spherical spreading from a *far field*, *free-field* measurement
- Platform Noise
 - Ship noise that can be detected by acoustic or vibration sensors
 - Not necessarily detectable as radiated noise
- Sonar Self-Noise
 - Received acoustic levels in the output of mission system receiving band(s) due to own-ship platform noise sources

Radiated Noise Characterization

(.)

• Propagation models treat a ship as a *spatially-compact simple harmonic source*

$$\lambda >> a$$
 $ka << 1$ $k = \frac{\omega}{c}$

- Far field acoustic pressure assumed to have range varying component given by $p(r) = \frac{j k \rho_0 c S_{\omega}}{r} e^{-j k r}$
- Leads to familiar expression for spherically spreading sound pressure level (SPL)

$$SPL(r) = 10\log\left(\frac{p^2(r)}{p^2(r_{ref})}\right) = L_s - 20\log(r)$$

• For source with directivity

$$p(r,\theta,\phi)e^{j\omega t} = p(r)H(\theta,\phi)e^{j\omega t}$$

Figure 13. Comparison of noise levels between two vessels built in the 1960's and two built in the 1990's, all free-running at 11 knots.

Example Radiated Noise Data

Radiated Noise Sources

- Sources
 - Propulsor Noise
 - Machinery Noise
 - Sea connected systems (pumps)
 - Transient sources

Paths

- Direct acoustic propagation
- Shaft line propogation
- Sound/structure interaction
- Diffracted paths
- Tankage

Propeller Noise

- Cavitation typical dominates broadband ship signature
 - Mitigation:
 - Design prop for maximum cavitation inception speed
 - Restrict noise-sensitive operations to speeds less than cavitation inception
- Propeller Broadband
 Noise

Non-propulsion Flow-related Noise

- Hull and appendage cavitation
- Bow wave transients
- Rudders + Struts

Radiated Measurements

- Measurements AT SEA using **UNDERWATER** instrumentation
 - Logistics
 - Instrumentation
 - Personnel
 - Assets
- Moving Source + Moving Receiver
 - Location, location...
 - RANGE = Source Level
 - Tracking

Deep Water Measurements

Without Surface Reflected Path

Shallow Water Data

 Simple source models coupled with simplified propagation assumptions <u>inadequate</u> to capture sound field variability for real sources in shallow water

Sonar Self-Noise Sources

- Flow --related (non-propulsion)
 - Bow-area flow noise
 - Bow wave transient
 - Flow-induced structural excitation
- sonar windows
 - window material
 - window attachment mechanism
- Propagation of AFT sources into sonar
 - machinery / prop noise via hull grazing path
 - Bottom reflected path

SONAR Self-Noise

Active Sonar Equation

Passive Sonar Equation

Sonar

Target

Environment

Sonar/Platform/Environment

Sonar Self-Noise Model

