Winch Monitoring for Increased Safety

...And Compliance with Appendix A

Presented by

Tom Rezanka
Managing Director

MEASUREMENT Technology NORTHEAST
20+ Years Serving Multiple Industries
UNOLS Appendix A

- At a Safety Factor of 2.0 or less
 - 20 Hz tension data acquisition
 - 20 Hz logging (0.050 ms)
 - 20 Hz tension alarm evaluation, HI or LO
 - Visual and audible
 - 20 Hz data output rate
 - 10 Hz tension data display
 - Digital and time series format
 - System accuracy $\leq 3\%$
 - Re verify/calibrate every 6 months
Winch Monitoring Overview
Tension Measurement

- Load Pins are the most common sensor found on research vessels
Tension Sensors #1

- **Capacity**
 - Full scale rating of the sensor, 100%
 - 0-10,000 pounds = 4 – 20 mA
 - Sensor response within the elastic properties of the metal deformation

- **Proof Load**
 - Maximum load sensor can bear before calibration is invalid
 - Typical rating 150%

- **Catastrophic Load**
 - Mechanical failure of sensor
 - Typically 300% but can be up to 800% in some sensors
Tension Sensors #2

- Overloads
 - Line tension exceeds proof load
 - Zero offset in sensor output
 - Critical safety application, replace
 - Mild overload can be recalibrated

- Do we need to replace sensors?
 - Both the raw strain gage and the amplified output will respond faster than 20 Hz
 - Sensor just one piece of the complex dynamic system
 - Reducing capacity will improve response and accuracy
Wrap Angle

- The wrap angle directly affects how line tension is measured
- Load on sheave = Line tension * WACF (wrap angle correction factor)
- Needs to be fixed, not variable
- Examples:
 - 120° Load on sheave = Line tension
 - 90° Load on Sheave = Line tension * 1.414
 - 0° Load on Sheave = Line tension * 2

- Devices exposed to these errors
 - Hanging sheaves
 - Sheaves that are in front of drum
 - dependent on layers
Corrections for Wrap Angle Errors

- Measure the angle with a inclinometer
 - Requires follower arm for line
 - Mechanical liability

- Dual Axis load Pin
 - Separate strain gages on x and y axis
 - Requires a instrument with correct algorithm
 - Expensive, extra internal electronics
 - Can only be used if only the exit or entry angle vary, not both
Calibration

- Two point calibration
 - Collect two points: HI and LO
 - Linearity of sensors allows for this
 - How
 - Dead end certified dynamometer to deck
 - Pick up weights of known capacity

- Look up tables
 - Non linear sensor behavior or super accuracy required
 - Multi point
 - Enter sensor units at known weights

- Verified every six months
 - Recalibrate as needed
Speed/Payout Sensors #1

- Three main types commonly used
 - Encoder
 - High payout resolution potential
 - Fragile
 - Requires external housing
 - Proximity Sensors
 - Requires two sensors
 - Metal targets
 - Limited sensor to target distance
 - Good choice for retrofit
Speed/Payout Sensors #2

- **Hall Effect Sensor**
 - Single barrel device
 - Magnetic targets
 - Large gap distance
 - Best for retrofits

- **Calibration**
 - Zero count on display
 - Run known length of cable through sheave
 - Note pulses
 - Calculate Pulses per unit length
Displays – Current Units

- 10+ Years, over 1,100 displays in use
- Tension sample rate ~ 3 Hz
- Payout update rate ~ 3 Hz
- Fixed speed response
- Upgrades to 5Hz available
 - Limited availability
- Combined with our software
 - FS 5.0 to 2.5
UNOLS Vessels – LCI-90

- MELVILLE
- THOMAS G. THOMPSON
- ROGER REVELLE
- MARCUS LANGSETH
- KILO MOANA
- WECOMA
- ENDEAVOR
- CAPE HATTERAS
- HUGH R. SHARP
- PELICAN
- F.G WALTON SMITH
- RONALD H. BROWN
LCI-90i – Next Generation

The new display will be a direct replacement for existing LCI-90.

- 9-36VDC input power requirement
- 150 Hz tension sample rate across 4 channels
- Alarm evaluation, 150 Hz
- 4 independent quadrature counter channels
- Menu adjustable speed response
- On board data logging, removable CF disk
- RS-485, RS-232 and USB serial output
- Ethernet interface (static IP)
- Real time clock, date/time stamp output data
- Time series screen
Complementary Devices

- LCI-90i Bridge Remote
 - Utilize color TFT display
 - Single button toggles between day/night

- LCI-80
 - Speed and Payout only
 - Same electronics as LCI-90i
Software – WinchDAC

- Appendix A Compliant
 - Data logging real-time
- View Line Parameters
 - Time Series
 - Vertical Bar Graphs
 - Analog Dials
- Alarm Indication
- Display setup/calibration
- Automatic email/alarm notification
 - Email notification - exceed elastic limit of wire
Software – WinchDAC
Appendix A Compliance

- For Factor of Safety ≤2.5, systems need to be upgraded
 - Displays (local and remotes), software

- LCI-90R units will be phased out
 - Do not respond to updated serial data rates
 - New remotes will be the LCI-90i to allow remote reset

- Serial data can still be transmitted via existing networks to meet the standard
 - Recommend moving data networks to Ethernet
Single or Multi-Winch Displays?

- Winch control station location
 - Multi Winch Requires station to be close together
 - Operator Comfort

- Operator Interface Requirement
 - Select Active Winch
 - Menu Structure Selection
 - External Select Switch
Winches With No Monitoring?

- Levelwind
 - Expensive
 - Long down time
 - Engineering required
 - Integrated/accurate

- External Sheave
 - Needs fixed wrap angle
 - Engineering required
 - Prone to error

- External Tensiometer
 - Portable, independent of winch
 - Maximum flexibility
For additional information, please contact:

Measurement Technology NW
4211 24th Avenue West
Seattle, WA 98199

ph: (206) 634-1308
fax: (206) 634-1309

Tom Rezanka, Managing Director
tomas@mtnw-usa.com