Acoustic Design, Construction and Testing of Fisheries Research Vessels

Ray Fischer Noise Control Engineering Inc. nonoise@noise-control.com

09/11/2004

FRV Acoustic Design - Overview

- ICES spec narrow band v TOB (measurement procedure)
- Lessons learned
- NC approach
 - N&V Control Plan Schedule, approach, deliverables
 - Detail design CAD, accuracy
 - Treatment optimization trade-offs
 - Design changes evaluation
- Shipyard Training
- QA
- Testing

NCE Experience - ICES

- NOAA FRV-40 (4 delivered)
- Univ. of Delaware R/V HUGH R SHARP
- Machinery test and overside test– GO SARS
- Machinery test JAMES COOK
- Reviewed Designer NOISE model of Spanish FRV
- ARRV Preliminary Design & UAF agent
- RCRV Preliminary Design
- Taiwan Research Vessel

SHIP'S UW SIGNATURE

- Propeller controls signature when cavitating
 - Cavitation ICES Cavitation free to 12 kts
 - AZIPOD unacceptable for low noise vessel
 - Bow Thrusters not operational for FRV quiet mode
- Machinery Noise
 - Propulsion Diesels or Motors
 - Diesel Generators
 - Large Reciprocating Machinery, Air Compressors
- Sea Connected Systems
 - Main Seawater Cooling
 - Auxiliary Seawater Cooling

Propeller Noise – Cavitation...

... is the vaporization of water due to a decrease of the local pressure. This generates millions of very small vapor bubbles whose collapse generates significant underwater noise.

Paths for Machinery Noise

- Airborne
 First
- First
 Structureborne
- Secondary
 Structureborne
- U/W Radiated
 Noise

OSCAR DYSON; Vessel Particulars.

Length	64 meters		
Beam	15 meters		
Draft	6 meters (centerboard retracted), 9.2 meters (centerboard extended)		
Displacement	2479 metric tons		
Speed	14 knots (sustained), 11 knots (maximum quiet speed)		
Diesel Generators	Two Caterpillar 3508 (910 kW, 1800 rpm) & Two Caterpillar 3516 (1360 kW, 1800 rpm)		
Propulsion Motor	Two tandem 1950 kW @ 128 rpm		
Propeller	Five blade, skewed		

OSCAR DYSON; Summary of Noise Control Treatments.

Low Noise Equipment	Propulsion Motor & Propeller Specially Designed
Double Stage Vibration Isolation	Diesel Generators & Reciprocating Equipment 3512 system – 18,113 kg; 3508 system – 14,770 kg
Single Stage Vibration Isolation	Auxiliary Equipment & HVAC
Acoustic Insulation	Perimeter of Engine Room and other noisy spaces
Damping Tiles	Applied to hull and bulkheads – constrained layer
Hull & Propeller	Specially designed by U.S. Navy (NSWC)

Specified Intermediate Mass Design

Space problem –
 Height and width

Bad to mix 'performance' and 'hardware' specification

Genset Factory Acceptance Test

GO SARS has 2 stage isolated diesel; single stage isolated generator. GO SARS has lower level diesel vibration.

April 2010 10% of genset mass in each block

Cat 3508 1st Skid Mode at 110.9 Hz

Vendor Weight SNAFU

Cat 3512 Genset	lbs	kg
Scaled wt of Dyson/Bigelow 3512	34610	15732
Design weight	28178	12808
Delta	6432	2924
		123%

N.B.: Wrong Center of Gravity also provided

FEA Model – Resonance avoidance & forced response (habitability vibration)

3rd Hull Mode = 8 Hz

Transverse Bending

Campbell Chart - FRV

NSWCCD design -GFI

Even a little marine growth will cause cavitation below 11 knots.

Noise Prediction Methods

- Use CAD tool to predict hull vibration from all machinery over airborne & structureborne paths (including 'secondary structureborne' path.
- Predict Underwater Noise by applying Hull Vibration-to-UW noise "Transfer Function" (unclassified).

Designer NOISE[™] 3-D MODEL

SOURCE/PATH WEIGHTING

	Source	Transmission Path			
Receiver		Airborne	Structure- borne	Secondary Structure- borne	Total
Dry Lab	3508 Port D/G	53	42	41	53
	3508 Stbd D/G	52	38	41	52
	3512 Port D/G	55	39	44	56
	3512 Stbd D/G	54	35	43	54
	DC Motor	26	14	23	28
	All Sources	59	45	49	60

Noise Levels on FRV-40

Sea Connected Systems – FluidBorne Noise

FRV-40 – Isolated Auxiliaries

FRV-40 – Pipe Clamps

HOW DID THIS HAPPEN?!?

FRV-40 – Required Testing

- Machinery Vibration in Factory
- Machinery Noise in Factory
- Machinery Vibration in Ship
- Airborne Noise in all Ship Spaces
- Structural Vibration in Ship (wide)
- Sonar Self Noise
- Underwater Radiated Noise
- NB: New ASA S12.64-2009 meas't std.

RADIATED NOISE TEST

RADIATED NOISE SIGNATURE

NOAA FRV-40 UNDERWATER NOISE SURVEY:

R/V HUGH R. SHARP University of Delaware

R/V SHARP – Design Features

- Meet ICES Limit at <u>8 knots</u>
- Diesel Electric Plant
- Double Isolated Diesel Generators
- Isolated ASIR DC Motors
- Isolated Schottel Z-Drives
- Isolated Auxiliary Machinery
- Retractable Transducer Pod

R/V SHARP - Profile

R/V SHARP – Floating Deck Diagram

R/V SHARP – Floating Deck

R/V SHARP – Floating Deck Transmission Loss (TL)

April 29RV Mount Performance

R/V SHARP – Damping Tiles

Summary

- Comprehensive acoustic control plan needed
 - Design
 - Construction
 - Testing
- Use of an accurate 3-D noise modeling, empirical and FEA tools allowed:
 - treatment types and areas of coverage to be optimized
 - thereby reducing weight, cost and space required and Total Cost of Ownership.
- Result vessels with low acoustic signature and low noise/vibration onboard environment

Things to consider

- Require the use of expert with direct experience with acoustic design of FRVs
- Require the use of CAD acoustic modeling such as Designer NOISE or equal
- Require Noise & Vibration Control Plans and detailed analysis, addressing ice strengthening
- Define criterion (NB v TOB), deliverables, test verification methods, penalties/incentives
- Check weights of critical items
- QA construction inspections

