Long Core System UNOLS Fleet Support Capability

Presented to UNOLS Fleet Improvement Committee, 29 March 2010 Jay Edgar (Glosten) - Al Suchy (WHOI) - Jim Broda (WHOI)

UNOLS Fleet Support for Long Core System Introduction

- Long Core System Overview
- Long Core Components
- Long Core Interface Requirements
 - Permanent Structural Modifications (Foundations)
 - Vessel Interfaces (Features & Capabilities)
 - Vessel Requirements (Fundamental Characteristics)
- Vessel Comparison
 - Comparison Matrix
 - Discussion of Long Core Interface Feasibility (All Vessels)
- Summary of Findings

- ▶ Long Core System Deployed on R/V Knorr
 - Knorr Scheduled for Retirement in 2015
 - Review Long Core Deployment Feasibility in UNOLS Fleet

UNOLS Fleet Support for Long Core System Long Core System Components

Core Barrel Davits

Core Handling Grapple

Long Core A-Frame

Lift Line Sheave

▶ Line Winch System >

4 29 March 2010

- Permanent Structural Modifications
 Knorr's modifications, required on all candidate vessels
 - Grapple Foundation
 Transom-mounted bolting flange
 - Aft deck slot for 60 inch diameter, cassette-mounted sheave
 - A-Frame Foundation
 Bolted, flush deck interface for A-Frame base
 - Lift Line Winch Foundation
 Flat, reinforced "Superdeck" area with high capacity sockets
 - Hydraulic Power Unit Installed below deck in aft lazarette for A-frame and Grapple

5 29 March 2010

- Vessel Interfaces
 Capability and Features Required for Long Core Support
 - Clear Side Deck Area
 145 ft by 4ft to support core assembly, retrieval, and extrusion
 - Clear Aft Deck Area
 For Lift Line winch, reel and related gear
 - Deck Crane
 To handle corehead and auxiliary weights + general deck service
 - Lab Area
 1,200 ft² Main Dk Dry Lab + 500 ft² Aux. Lab for core processing
 - Container Stowage
 Four containers two 20ft refrigerated, one 20 ft storage, and one custom 16ft
 - Station Keeping
 Maintain position for core location targeting and vertical lift line

- Vessel Requirements Characteristics necessary to support Long Core system
 - Pullout Load Capacity (Trim Resistivity) Limited by freeboard at stern at line breaking strength
 - Main Deck Load Capacity Support 100 long tons of Long Core Components
 - Maximum / Minimum Vessel Beam Limits set by Grapple reach between centerline and side

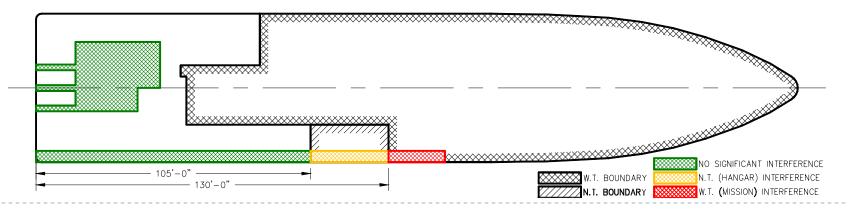
7 29 March 2010

Vessel Comparison Matrix

Long Core System Interface	Knorr	Thompson Revelle	Atlantis	Langseth	Sikuliaq (ARRV)	OCRV	RCRV	Kilo Moana
1.0 Support Required Permanent Mods	Y	Y	Y	$N_{\rm C}$	Y	Y	N	N
2.1 Clear Extent of Side Deck (145')	Y_{M1}	N _{M2}	N_{M2}	$N_{M1,2}$	N _{M2}	N_{R1}	N	N
2.2 Aft Deck Area	Y	Y	N_{M2}	$N_{M1,2}$	Y	Y_{R2}	N	N
2.3 Crane Service at Transom Corner	Y	Y	Y	Y	Y	Y_{R2}	Y	Y
2.4 Lab Area	Y	Y	Y	Y	Y	N_{R1}	N	N
2.5 Van Stowage	Y	Y	Y	Y	Y	N_{R1}	N	N
2.6 Station Keeping Capability	Y	Y	Y	Y	Y	Y	Y	Y
3.1 Pull out Capacity	Y	Y	Y	Y	Y	Y_{R2}	N	N
3.2 Deck Payload Capacity	Y	Y	Y	Y	Y	Y	N	Y
3.3 Vessel Beam	Y	Y	Y	$N_{\rm C}$	Y	Y	Y	N

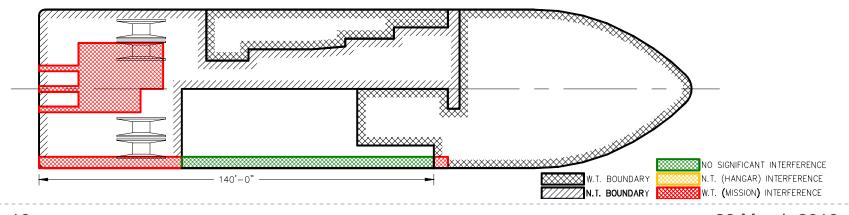
Notes:

M1 – modification required to open hangar-type structure

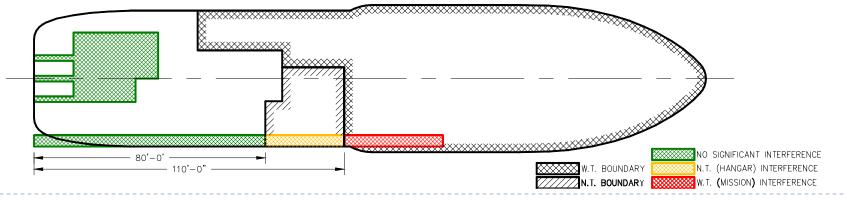

M2 – modification required to interior mission critical spaces / significant impact to existing mission capability

C – Significant change/replacement of current Long Core system components required

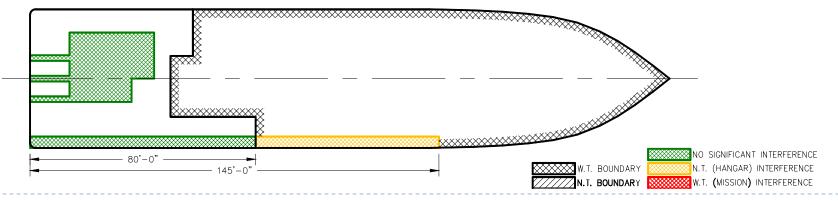
R1 – Not currently required; unlikely to support without specific alteration

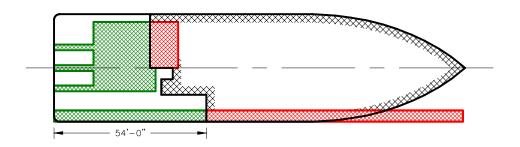

R2 - Not currently required; may meet within current design trend

- R/V Thompson, Revelle, and Atlantis
 - Integration of existing Long Core system
 - Maximum core length without modification: 32m to 35m
 - Maximum core length with modifications: 40m
 - Modifications for 45m core Mission Impact (Main Lab Area)
 - Atlantis A-Frame (Alvin-specific) complicates de-mobilization
 - Potential modifications to Long Core system
 - ▶ Port side, 01 Level option with Grapple modification

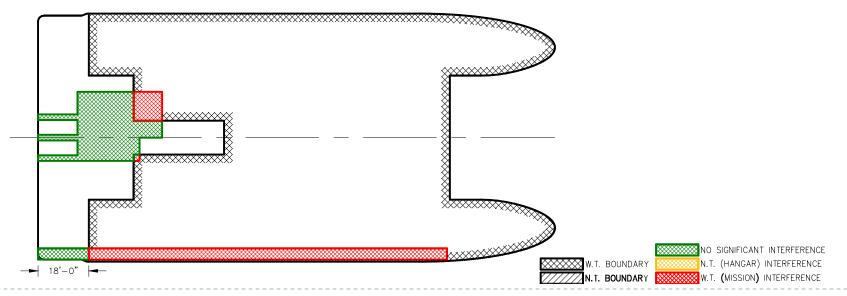


▶ R/V Langseth


- Integration of existing Long Core system
 - Maximum core length with modifications: 43m
 - Direct integration requires major vessel & system modifications (Seismic systems create significant interferences)
- Potential modifications to Long Core systems
 - Focus on leveraging unique features of Langseth


- ▶ R/V Sikuliaq (ARRV)
 - Integration of existing Long Core system
 - Maximum core length without modification: 25m
 - Maximum core length with major modification: 34m (Baltic Room)
 - Modifications for 45m core Not Feasible (Impact Ice Reamer)
 - Potential modifications to Long Core system
 - No obvious modifications for full length Long Core system

- Ocean Class Research Vessel (Design)
 - Integration of existing Long Core system
 - Current Requirements unlikely to Support Long Core System
 - □ Design trend: Basic vessel size could support Long Core system
 - Requirements for One-Off Long Core Support OCRV
 - □ Side Deck, Lab Area, and Stern Deck prescribed dimensions
 - □ Additional Van Capacity
 - □ Hull Form specific trim resistance



- Regional Class Research Vessel (Design)
 - Integration of existing Long Core system
 - Requirements No intention to support Long Core
 - Resulting designs Simply too small

▶ R/V Kilo Moana

- Integration of existing Long Core system
 - SWATH not compatible with Long Core demands
 - □ High Pullout Loads extreme trim
 - □ Limited Deck Area

Summary

- R/V Knorr Long Core Integration Design and Capability Baseline
- ▶ R/V *Thompson* and *Revelle*
 - □ Direct Integration 40m core with modification (Stanchions)
- R/V Langseth
 - □ Direct Integration complex; review Long Core system revisions
- ▶ R/V Sikuliaq (ARRV)
 - □ Direct Integration 34m core with major modification (Baltic Room)
- OCRV
 - □ Direct Integration if OCRV Requirements changed for One-off Vessel
- RCRV and R/V Kilo Moana
 - □ Not Viable Candidates for Long Core support