Winch Monitoring for Increased Safety

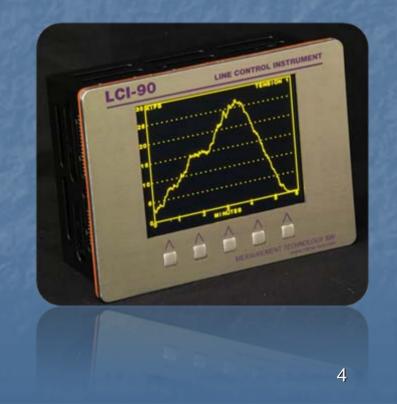
...And Compliance with Appendix A

Presented by

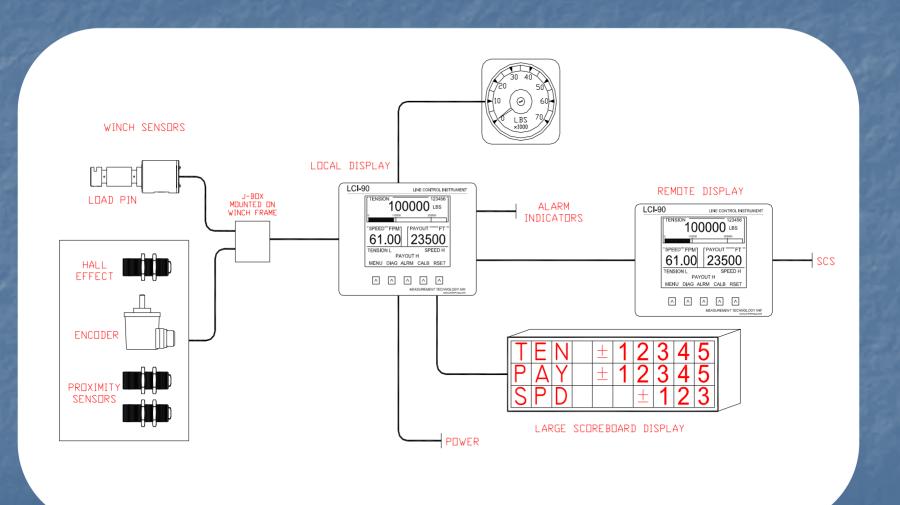
Tom Rezanka

Managing Director

20+ Years Serving Multiple Industries

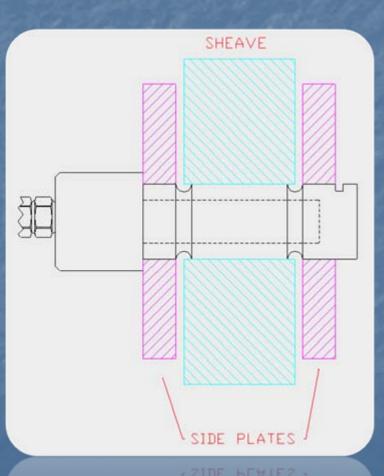


Overview


- Appendix A summary
- Tension Measurement
- Speed & Payout Measurement
- Operator Interface
- Appendix A Compliance
- Questions

UNOLS Appendix A

- At a Safety Factor of 2.0 or less
 - 20 Hz tension data acquisition
 - 20 Hz logging (0.050 ms)
 - 20 Hz tension alarm evaluation, HI or LO
 - Visual and audible
 - 20 Hz data output rate
 - 10 Hz tension data display
 - Digital and time series format
 - System accuracy ≤ 3%
 - Re verify/calibrate every6 months



Winch Monitoring Overview

Tension Measurement

Load Pins are the most common sensor found on research vessels

Tension Sensors #1

Capacity

- Full scale rating of the sensor, 100%
 - \circ 0-10,000 pounds = 4 20 mA
- Sensor response within the elastic properties of the metal deformation

Proof Load

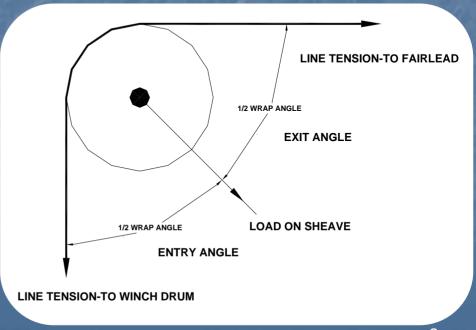
- Maximum load sensor can bear before calibration is invalid
- Typical rating 150%

Catastrophic Load

- Mechanical failure of sensor
- Typically 300% but can be up to 800% in some sensors

Tension Sensors #2

Overloads

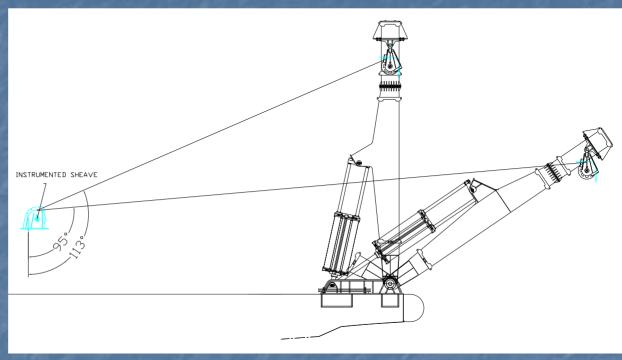

- Line tension exceeds of proof load
 - Zero offset in sensor output
 - Critical safety application, replace
 - Mild overload can be recalibrated.

Do we need to replace sensors?

- Both the raw strain gage and the amplified output will respond faster than 20 Hz
- Sensor just one piece of the complex dynamic system
 - Reducing capacity will improve response and accuracy

Wrap Angle

- The wrap angle directly affects how line tension is measured
- Load on sheave = Line tension * WACF (wrap angle correction factor)
- Needs to be fixed, not variable
- Examples:
 - 120° Load on sheave = Line tension
 - 90° Load on Sheave = Line tension * 1.414
 - 0° Load on Sheave = Line tension * 2
- Devices exposed to these errors
 - Hanging sheaves
 - Sheaves that are in front of drum
 - dependent on layers


Corrections for Wrap Angle Errors

- Measure the angle with a inclinometer
 - Requires follower arm for line
 - Mechanical liability
- Dual Axis load Pin
 - Separate strain gages on x and y axis
 - Requires a instrument with correct algorithm
 - Expensive, extra internal electronics
 - Can only be used if only the exit or entry angle vary, not both

Application

A Frame	Weight	Display	Error	Single Axis Error
Vertical	59260	57954	1296	-7551
Half Aft	59260	59223	27	位在1916年11日本中
Full Aft	59260	61004	-1724	7101

Calibration

Two point calibration

- Collect two points: HI and LO
- Linearity of sensors allows for this
- How
 - Dead end certified dynamometer to deck
 - Pick up weights of known capacity

Look up tables

- Non linear sensor behavior or super accuracy require
- Multi point
- Enter sensor units at known weights

Verified every six months

Recalibrate as needed

Speed/Payout Sensors #1

- Three main types commonly used
 - Encoder
 - High payout resolution potential
 - Fragile
 - Requires external housing
 - Proximity Sensors
 - Requires two sensors
 - Metal targets
 - Limited sensor to target distance
 - Good choice for retrofit

Speed/Payout Sensors #2

Hall Effect Sensor

- Single barrel device
- Magnetic targets
- Large gap distance
- Best for retrofits

Calibration

- Zero count on display
- Run known length of cable through sheave
- Note pulses
- Calculate Pulses per unit length

Displays – Current Units

- 10+ Years, over 1,100 displays in use
- Tension sample rate ~ 3 Hz
- Payout update rate ~ 3 Hz
- Fixed speed response
- Upgrades to 5Hz available
 - Limited availability
- Combined with our software
 - FS 5.0 to 2.5

LCI Display Installations

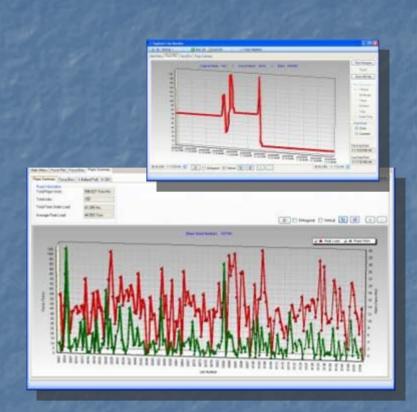
LCI-90i — Next Generation

The new display will be a direct replacement for existing LCI-90.

- 9-36VDC input power requirement
- 150 Hz tension sample rate across 4 channels
- Alarm evaluation, 150 Hz
- 4 independent quadrature counter channels
- Menu adjustable speed response
- On board data logging, removable CF disk
- RS-485, RS-232 and USB serial output
- Ethernet interface (static IP)
- Real time clock, date/time stamp output data
- Time series screen

Complementary Devices

- LCI-90i Bridge Remote
 - Utilize color TFT display
 - Single button toggles between day/night
- LCI-80
 - Speed and Payout only
 - Same electronics as LCI-90i



Software – WinchDAC

2010 Release

- Meet UNOLS Appendix A data logging real-time requirement
- Upload stored data on any local display
- View line parameters
- Track line parameter data in concise format for rope serial number
- Automatic email/alarm notification
 - Email notification exceed elastic limit of wire
- Incorporate Activity log and User log information

Appendix A Compliance

- For Factor of Safety ≤2.5, systems need to be upgraded
 - Displays (local and remotes), software
- LCI-90R units will be phased out
 - Do not respond to updated serial data rates
 - New remotes will be the LCI-90i to allow remote reset
- Gimbal bracket mount enclosures can reused
- Any WinchDAC software needs to be upgraded
- Serial data can still be transmitted via existing networks to meet the standard
 - Recommend moving data networks to Ethernet

For additional information, please contact:

Measurement Technology NW 4211 24th Avenue West Seattle, WA 98199

ph: (206) 634-1308 fax: (206) 634-1309

Tom Rezanka, Managing Director tomas@mtnw-usa.com