What future activities should FIC take on? Some considerations:

- Projected service life end dates:
  - Agency representatives are evaluating ship conditions during inspections.
  - Some vessels are at or approaching their projected end of service life

Are new projections needed?

# Projected Service Life End Dates: by 2015

| SHIP/CLASS             | BUILT | Conv/<br>Mid Life | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
|------------------------|-------|-------------------|------|------|------|------|------|------|------|------|
| Global Class           |       |                   |      |      |      |      |      |      |      |      |
| Melville               | 1969  | 1991              |      |      |      |      |      |      | R    |      |
| Knorr                  | 1970  | 1989              |      |      |      |      |      |      |      | R    |
| Intermediate Class     |       |                   |      |      |      |      |      |      |      |      |
| Seward Johnson         | 1985  | 1994              |      |      |      |      |      |      |      | R    |
| Wecoma                 | 1976  | 1994              |      |      | R    |      |      |      |      |      |
| Endeavor *             | 1976  | 1993              |      |      | R    |      |      |      |      |      |
| Oceanus                | 1976  | 1994              |      |      | R    |      |      |      |      |      |
| Regional Ships         |       |                   |      |      |      |      |      |      |      |      |
| Point Sur              | 1981  |                   |      |      |      | R    |      |      |      |      |
| Cape Hatteras          | 1981  | 2004              |      |      |      | R    |      |      |      |      |
| Regional/Coastal Ships |       |                   |      |      |      |      |      |      |      |      |
| Robert Gordon Sproul   | 1981  | 1985              |      |      |      |      |      |      |      | R    |
| Pelican                | 1985  | 2003              |      |      |      |      |      | R    |      |      |
| Local Ships            |       |                   |      |      |      |      |      |      |      |      |
| Blue Heron             | 1985  | 1999              |      |      |      |      |      |      |      | R    |
| Clifford Barnes        | 1966  | 1984              |      |      |      |      |      | R    |      |      |

| OOI Estimated Days at Sea - October 2009 Update |                      |                  |                     |      |           |                                          |                         | (                 |      |
|-------------------------------------------------|----------------------|------------------|---------------------|------|-----------|------------------------------------------|-------------------------|-------------------|------|
|                                                 | 10 1                 |                  | Days at Sea by year |      |           |                                          |                         |                   |      |
| Infrastructure                                  | Vessel Class         | 2010<br>Construe | <b>2011</b> ction   | 2012 | 2013      | 2014                                     | <b>2015</b><br>Operatio | <b>2016</b><br>ns | 2017 |
| Atlantic                                        |                      | 145"W            |                     | 46°N |           |                                          | 14                      | the for           |      |
| Pioneer Array                                   | Intermediate         |                  | 127°W               |      | 18        | 18                                       | 18                      | 18                | 18   |
| Pioneer Array                                   | < 80 ft.             |                  |                     | 4    | 12        | 12                                       | 12                      | 12                | 12   |
| Irminger Sea                                    | Global               |                  |                     |      | 28        | 28                                       | 28                      | 28                | 28   |
| Argentine Basin                                 | Global               |                  |                     |      | 24        | 24                                       | 24                      | 24                | 24   |
|                                                 |                      |                  |                     |      | 1 (7 - 1) | a sta                                    |                         |                   | 1    |
| Pacific                                         |                      |                  |                     |      |           | 100                                      |                         |                   |      |
| Regional Scale Nodes                            | Global+ROV           | 28               |                     |      | 64        | 59                                       | 40                      | 40                | 40   |
| Station Papa                                    | Global               |                  |                     | 0    | 22        | 22                                       | 22                      | 22                | 22   |
| Southern Ocean                                  | Global               |                  |                     | U    |           | 24                                       | 24                      | 24                | 24   |
| Endurance Array                                 | Global+ROV           |                  | 0                   | 0    | 0         | 5                                        | 5                       | 5                 | 5    |
| Endurance Array                                 | Global               |                  | U                   | U    | U         | 8                                        | 8                       | 8                 | 8    |
| Endurance Array                                 | Intermediate         | 5                | 1                   | q    | 0         | 30                                       | 22                      | 22                | 22   |
| Endurance Array                                 | $\sim 80 \text{ ft}$ |                  | •                   | 5    | U         | 54                                       | 51                      | 51                | 54   |
| Endurance Anay                                  | < 00 II.             |                  |                     |      |           | 54                                       | 54                      | 54                | 54   |
| Global testing                                  | Intermediate         | 2                |                     |      |           | -                                        |                         |                   |      |
| Clobal testing                                  | Global               |                  |                     |      |           |                                          |                         |                   |      |
|                                                 | Giubai               | <b>J</b>         |                     |      |           | in the second                            |                         |                   |      |
| Total by yessel class                           |                      |                  |                     |      |           | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | 18                      |                   |      |
|                                                 | Global               | 3                | 0                   | 0    | 74        | 106                                      | 106                     | 106               | 106  |
| ONCES                                           |                      | 28               | 0                   | 0    | 64        | 64                                       | 100                     | 100               | 100  |
|                                                 |                      | 20               | 1                   | 0    | 18        | /9<br>/18                                | 40                      | 40                | 40   |
|                                                 | $\sim 80 \text{ ft}$ | 0                | 0                   | 1    | 12        | 66                                       | 66                      | 66                | 66   |
|                                                 | < 00 II.             | 0                | 0                   | 4    | 12        |                                          | 00                      | 00                | 00   |
|                                                 |                      |                  |                     |      |           |                                          |                         |                   |      |

# THE NATIONAL

DIVISION ON EARTH AND LIFE STUDIES

Science at Sea: Meeting Future Oceanographic Goals with a Robust Academic Research Fleet

Briefing for the Office of Naval Research and National Science Foundation

> Ronald Kiss and RADM Richard Pittenger, *Co-Chairs* Committee on Evolution of the National Oceanographic Research Fleet October 13, 2009

# THE NATIONAL

THE NATIONAL ACADEMIES

Advisers to the Nation on Science, Engineering, and Medicine

National Academy of Sciences National Academy of Engineering Institute of Medicine National Research Council

#### Fleet Renewal Plan

#### Recommendation

Federal agencies supporting oceanographic research should implement **one comprehensive, long-term research fleet renewal plan** to retain access to the sea and maintain the nation's leadership in addressing scientific and societal needs.

#### **Community Involvement**

### Recommendation

All future UNOLS ship acquisitions, beginning with the planned Ocean Class vessels, should **involve the scientific user community** from the preconstruction phase through post delivery of the ship.

#### Larger, Capable Ships

### Recommendation

The future academic research fleet requires investment in **larger**, more capable, general purpose Global and Regional class ships to support multidisciplinary, multiinvestigator research and advances in ocean technology.

#### **Integration with NOAA**

### Recommendation

NOAA should identify which of its 13,200\* unmet annual ship day needs could be supported by the UNOLS fleet. **NOAA and UNOLS should work together** to develop a long-term plan to increase the usage of UNOLS ships in support of the NOAA mission.

\*As identified by the NOAA Office of Marine and Aviation Operations in their 2008 Ship Recapitalization Plan

#### Integration w/OPP and USCG

#### Recommendation

The NSF Division of Ocean Sciences, NSF Office of Polar Programs, and the U.S. Coast Guard should **improve coordination** of ship operations and support between the UNOLS and polar research fleets.

 The composition of the Fleet is changing – ships are being removed from service, new ships are planned.

|                               | 2008 | 2025 |  |  |  |  |
|-------------------------------|------|------|--|--|--|--|
| Global<br>Class               |      |      |  |  |  |  |
| Ocean<br>Class                |      |      |  |  |  |  |
| Intermediate<br>Class         |      |      |  |  |  |  |
| Regional<br>Class             |      |      |  |  |  |  |
| Regional/<br>Coastal<br>Class |      |      |  |  |  |  |
| Local<br>Class                |      |      |  |  |  |  |
| Total Ships                   | 23   | 14   |  |  |  |  |
| Total Berths                  | 492  | 331  |  |  |  |  |
| Available<br>Capacity         | 5085 | 3270 |  |  |  |  |

23 ships in 2008  $\rightarrow$  14 ships in 2025 From 5085 ship days  $\rightarrow$  3270 in 2025 By 2017, all Intermediate size ships and all but one Local Class ships will be retired.

By 2025, there will be three Global class ships.

- Greening the Fleet
- FIP Recommendation:
  - We recommend that UNOLS, the federal agencies, and individual operators consider how to make the present and future fleet more environmentally sustainable. New and existing technologies and practices should be used in the construction, operation, and recycling of research vessels and UNOLS should take a leadership role in promoting a green U.S. research fleet, as we move forward in developing the academic fleet.

No new vessel acquisitions are planned during the period 2015-2020 – Who and how do we fund new Global Class vessels



- Large shared-use facilities with designated support platforms (ex. Long Core Facility)
- Are there any tasks that the Agency Representatives would like the FIC to take on?
- Are there any Council tasks for FIC?

# **Back-up Slides**

- To realize the U.S. Commission on Ocean Policy recommendation for strong support for ocean research, including ample access to modern research vessels, the UNOLS fleet must increase beyond the current projected levels detailed in the *Federal Oceanographic Fleet Status Report* [Interagency Working Group on Facilities (IWG-F)].
- The Federal agencies should continue the fleet renewal activities that are currently underway (the Alaska Region Research Vessel, the three Regional Class ships, and the two Ocean Class ships), under the timeline shown in the 2007 *Federal Oceanographic Fleet Status Report* [IWG-F].
- Begin the process now for new ships that will be needed in 2017 and beyond. Plans for replacement of the two existing general purpose Global Class vessels whose planned end of service lift occurs by 2017, must start now. A minimum of one and preferably two new general-purpose Global Class vessel(s) should be planned for, funded, and constructed by 2018.

- New state-of-the-art ships with technically sophisticated equipment will require more highly-trained and specialized personnel to provide technical support. Personnel strategies must be developed to improve the staffing and retention of experienced technical support personnel and crew.
- Recognizing the delays in the timelines for delivering some of the planned ships into the fleet, some of the current ships nearing their end of service life should have their service life extended and be maintained at an adequate operational level to meet near term science requirements until the new ships come on line.
- The Ocean Observatory Initiative (OOI) will place new and increased demands on the vessels of the UNOLS fleet, and on Remotely Operated Vehicles (ROVs) for operations and maintenance. As the observatory systems are installed, the planned end of service dates and geographic locations of these ships should be carefully considered to ensure that OOI ship demands can be met.

- A capable National Deep Submergence Facility (NDSF) that includes a suite of deep submergence vehicles is required for continued support of science on the seafloor and on the mid ocean ridge systems. OOI projects new and increased demands for ROVs for support at their study sites. We recommend that planning and acquisition efforts for new deep submergence assets continue.
- If budget projections remain at the current low level, retirement of the least capable ships near the end of their service lives should be considered. Any decisions on ship retirement versus lay-ups should be made based on multi-year projections of ship time demand rather than single year figures of fleet utilization.
- The smaller (e.g., under 40 m) ships of the UNOLS fleet serve a crucial role in supporting science in our nation's coastal zone where the human impacts of development and resource use are greatest. To continue to meet current requirements for the entire academic oceanographic community, UNOLS should encourage the timely replacement of Local vessels and Coastal/Regional vessels by institutions, state governments, and regional partnerships.

- Federal agencies that operate their own research vessels are encouraged to examine their respective fleet capacities and capabilities to ensure that the Federal fleet as a whole is optimally utilized. Ship capacity that could be used to support academic research ship demand should be identified. Issues of access, facility scheduling, and financial support of an integrated Federal fleet of vessels should be addressed as a coordinated effort between UNOLS and the Interagency Working Group on Facilities.
- We recommend that UNOLS, the federal agencies, and individual operators consider how to make the present and future fleet more environmentally sustainable. New and existing technologies and practices should be used in the construction, operation, and recycling of research vessels and UNOLS should take a leadership role in promoting a green U.S. research fleet, as we move forward in developing the academic fleet.