

What to Expect from Your New Low (and Ultra-Low) Sulfur Fuels

Presented at the Universities National Oceanographic Laboratories System (UNOLS) Research Vessel Operator's Committee (RVOC)

F. W. Girshick Port Aransas, TX 15 April 2009

Reproduction of any material whether by photocopying or storing in any medium by electronic means or otherwise is prohibited without prior written consent of Infineum International Limited. © Copyright INFINEUM INTERNATIONAL LIMITED 2009. All rights reserved

See the legal disclaimer notice on www.Infineum.com

"INFINEUM", "DOBANAX", "PARATAC", "SYNACTO", "VEKTRON", and the corporate mark comprising the interlocking ripple device are trademarks of Infineum International Ltd. "VISTONE" is a trademark of Exxon Mobil Corporation used under licence by Infineum International Limited.

Outline

- What is Diesel Fuel?
 - Specifications and Properties
- Locomotive and Inland Marine Emissions Standards (Tiers)
- O Technologies to Meet Emissions Standards

"Fine-tuning," New Engine Designs, After-treatment devices

Introduction of Lower Sulfur Fuels – Timing and Reasons

To enable emissions technologies

- Operational Experiences with Lower Sulfur Fuels
 - Good Better lubricant base number retention
 - Bad Higher cost, lower fuel economy
 - Ugly Deposits, smoke, oil consumption increase

Other - No significant difference

O Possible Remedies

Cause for Concern?

These are Uncertain Times for Railroads/Inland Marine!

- Emissions Standards Continue to Tighten
 - New Engine Designs Anticipated (Tier 3 & 4)
 - Lower Sulfur Fuel is Part of the Solution
- Transition Period(s)
 - How to Minimize Operational Disruptions?

Number 2 Diesel Fuel Specifications (ASTM D975-08)

"Sulfur Designation"	"High"	"Low"	"Ultra-Low"
Name	S-5000	S-500	S-15
Sulfur Content	<0.50 m%	<0.05 m%	<15 ppm
Viscosity @ 40°C	1.9 – 4.1	1.9 – 4.1	1.9 – 4.1
Flash Point	>52°C	>52°C	>52°C
Cetane Number	≥40	≥40	≥40
Cetane Index		≥40	≥40
Aromatics		≤35	≤35
Lubricity, HFRR	≤520	≤520	≤520
Conductivity	≥25	≥25	≥25
Distillation @90°C	282 - 338	282 – 338	282 – 338
Ash	≤0.01	≤0.01	≤0.01
Water & Sediment	≤0.05%	≤0.05%	≤0.05%
Carbon Residue	≤0.35%	≤0.35%	≤0.35%
Copper Corrosion	≤3	≤3	≤3

US EPA Locomotive Emissions Standards (g/bhp-hr)

	<u> Tier 0</u>	<u>Tier 1</u>	<u>Tier 2</u>	<u> Tier 3</u>	<u>Tier 4</u>
Model Year:	1973	2002	2005	2012	2015
Parameter					
Nitrogen Oxides (NO) _x)				
Linehaul	8.0	7.4	5.5	5.5	1.3
Switcher	11.8	11.0	8.1	5.0	1.3
Particulates (PM)					
Linehaul	0.22	0.22	0.20	0.10	0.03
Switcher	0.26	0.26	0.24	0.10	0.03
Hydrocarbon (HC)					
Linehaul	1.00	0.55	0.30	0.30	0.14
Switcher	2.10	1.20	0.60	0.60	0.14
Carbon Monoxide (C	;0)				
Linehaul	5.0	2.2	1.5	1.5	1.5
Switcher	8.0	2.5	2.4	2.4	2.4
Smoke Opacity					
Steady-state	30	25	20	20	20
30-sec peak	40	40	40	40	40
3-sec peak	50	50	50	50	50
40CFR Parts 85, 89, and 92 (20	000) & 40CFR 103	3.825 (signed 14 M	larch 2008)		

Inland Marine Emissions Regulations

	Displacement		Power		Median Life
Category	L/cyl	cu in	kW	Нр	years
1	< 5	< 305	> 37	> 50	15
2	5 – 30	305 – 1831			23
3	> 30	> 1831			

_					g/kW-hr		
Category	L/cyl	cu in	kW	Year	NO _X + HC	PM	CO
1	< 0.9	> 55	≥37	2005	7.5	0.40	5.0
1	≥0.9 – <1.2	55 – 73		2004	7.2	0.30	5.0
1	≥1.2 – <2.5	73 – 153		2004	.2	0.20	5.0
1	≥2.5 - <5.0	153 – 305		2007	7.2	0.20	5.0
2	≥5.0 – <15	305 – 915		2007	7.8	0.27	5.0
2	≥15 - <20	915 – 1221	<3300	2007	8.7	0.50	5.0
2	≥15 – <20	915 – 1221	≥3300	2007	9.8	0.50	5.0
2	≥20 – <25	1221 – 1526		2007	9.8	0.50	5.0
2	≥ 25 – < 30	1526 - 1831		2007	11.0	0.50	5.0

International Maritime Organization (IMO)				
Engine Speed, rpm:	< 130	130 - 2000	> 2000	
NO _x (g/Kw-hr):	17.9	45N ^{-0.2}	9.8	

USA EPA Locomotive Emissions Standards (Linehaul)

Trucks vs. Trains (2007)

Railroad has lower overall contribution to emissions than trucking
 49% of NO_x from gasoline; 49% of PM from stationary sources

USA Emissions Standards – Timeline

- On-highway had more incremental decreases (7 vs. 4)
 - Railroad lagging 14 years
 - Next lag expected to be only 5 years
 - But really big change lags 8 years

How to Meet Emissions?

 Tier 0 (1973) & Tier 1 (2002) Fine-tuning Tier 2 (2005) New engine designs More efficient combustion 	How Railroad Met the Limits
 Higher pressure injection More electronics Lower oil consumption 	
Tier 3 (2012)	
More fine-tuning?	
Miller Cycle?	How On-Highway
Tier 4 (2015)	Met the Equivalent
Engine re-design?	Limite
Valve timing?	LIIIIIIS
Exhaust Gas Recirculation?	
Catalysts	

2009 UNOLS

Reasons to Reduce Fuel Sulfur

- Direct Effects
 - □ Sulfur incorporated into regulated emission species
 - Sulfur Oxides (S_{OX}) measured as particulates
- Technologies That Work <u>Better</u> with Lower Sulfur
 - Exhaust Gas Recirculation (EGR)
 - Less acid formed
 - Diesel Particulate Filters (DPF)
 - Fewer particulates to trap
- Technologies That <u>Require</u> Lower Sulfur
 - Catalysts poisoned by sulfur
 - Diesel Oxidation Catalysts (DOC)
 - Selective Catalytic Reduction (SCR)

Diesel Fuel Sulfur Limits

Railroad and Off-highway will follow On-highway
 Ultra Low Sulfur Diesel will allow aftertreatment for railroad

United States Diesel Fuel Transition

April 2009

12

US Energy Information Agency, <u>www.eia.doe.gov</u>

United States Diesel Fuel Transition

○ US Energy Information Agency, <u>www.eia.doe.gov</u>

United States Diesel Fuel Prices

O Prices declining after sudden rise?

United States Diesel Fuel Prices

○ Ultra-low sulfur diesel has 5 – 12¢/gallon premium

United States Diesel Fuel Usage

Problems Experienced with Lower Sulfur Fuels

Direct Effects

- Lower fuel economy
 - Sulfur in denser, aromatic molecules
 - Results in less energy *per* unit volume
 - No known remedy → change units?
- Injector Wear (Lubricity)
 - Sulfur compounds are surface-active
 - Other surface-active species removed with sulfur
- Indirect Effects
 - Less Acid Formation
 - Decrease need for base number?
 - Combustion Chamber Deposits
 - Liner Varnish (Lacquer)
 - Bore polishing (liner wear)
 - Oil consumption increase
 - Black smoke

From Equilibrium to Equilibrium

O Possibility for Uncertainty During Transition Periods

Conclusions

- Emissions Regulations for Off-Highway are Increasingly Stringent
- Low Sulfur Fuels Are Required for New Emissions Standards
 - Both direct and indirect reasons
 - May lead to operational problems
 - Data accumulating
- O Transition Period
 - Engine, Fuel, and Lubricant All Changing on Different Schedules
 - Potential for Imbalance
- Operators are Advised to Maintain Awareness
 - Potential Operational Problems
- Onsult
 - Engine Manufacturer
 - □ Fuel Supplier
 - Lubricant Supplier
- Fuel additives May Offer an Interim Solution
 - Complimentary to engine lubricants

Contact Information

Fred W. Girshick Infineum USA, L.P. 1900 East Linden Avenue Linden, New Jersey 07036 908-474-3247 Fred.Girshick@Infineum.com