MARS Observatory Monterey Accelerated Research Site

RVOC – Chris Grech, April 2009

The Purpose of MARS

MARS is the test-bed cabled observatory for the National Science Foundation's Ocean Observatory Initiative

Provides a test bed for instrument developers testing new scientific instrument technology
Provides a facility for low cost instrument "endurance" testing
Provides a prototype for the development of technology infrastructure for future observatories.
Provides an opportunity to test ROV maintenance, deployment and recovery protocols for ocean observatories

What is MARS?

62 km of fiber optic cable
Single undersea node at .9 km depth
100 Mbits per second data rate
10 kW of power to 8 instrument ports
Capability of placing instruments on "extension cords"
Serviced using *Ventana* ROV

MARS cables

Sub-Sea Observatory Marine Operations and Maintenance **Pre-installation Surveys Initial Installation** Science Sensor Installation **At-sea Maintenance**

Tyco Telecommunications <u>C.S. Global Sentinel</u>

ing

ters

Cable storage tank

- 30 ft. tall x 40.5 ft. wide (38,400 cu. ft.)
- One of three cable main storage tanks
- Nearly the size of the MBARI test tank
- Four more smaller auxiliary tanks (1,450 cu. ft.)

ROV Jetting System

1.5 m maximum burial depth

MARS Offshore node

TRF 8100lbs Electronics Package 5000lbs negative in air 200lbs positive in water

MBARI MARS Maintenance

Electronics Node Deployment

ROV / Vessel Task List

Deploy and Recover the Science Node
 Testing the Science ports
 Deploying Instrument Packages
 Interconnecting Instrument Packages
 Permit requirements for cable route surveys

Deployment of Extension Cables

Extension cable deployments

EXTENSION CABLES

For observatories where sites of interest are distributed

Extension cables can provide 10/100Base-F over 100+ km extension cables, 10 kW at 50 km and 5 kW at 100 km

 Academic ROVs can lay ~5 km extensions in areas not accessible using surface ship deployments

UNOLS ships can lay 100+ km extension cables

- New equipment spreads will be required
- Ship modifications would be helpful
- Crew training is critical

Extension cable examples

- ~\$1M just to install a "full functionality" 100 km extension cable using a "free" UNOLS vessel – 5 kW and 100 Mbits/second
- ~\$75K to install a "minimal functionality" 5 km extension cable using a "free" academic ROV and vessel – 200 Watts and 100 Mbits/second

Lessons

Permits extensive

Recovery of cable is a bonded cost \$1mil

Node repair requires the availability of cable ships \$60-\$100K/day

Liability Insurance

Fishing mitigation issues

Need an ROV resource for quick response

MARS ~ \$12 Mil

Regulatory surveys of complete route

Thorough testing of the subsea elements !

MARS/NEPTUNE PRIMARY SCIENCE PORT

■ 400 and 48 VDC 25 Amps maximum 10/100Base-T Ethernet TCP/IP, FTP, FTP streams, ... NTP of order 10s of millisecond accuracy 1 pulse per second clock Of order 1s of microsecond accuracy Available at main nodes, secondary nodes and at the end of extension cables

Fleet Support of Observatories

EXTENSION CABLES

- Short haul (<100m), low power, high bandwidth
 - All copper Relatively cheap
 - ROV deployable
- Short, high power, high bandwidth
 - All copper but more of it
 - May require ship deployment
- Medium haul (<4 km), high power, high bandwidth
 - Copper (lots of it!) and fiber
 - Requires SIIM to convert electrical signals to optical
 - Probably requires ship deployment
- Other combinations?
 - High power, high bandwidth, long haul (~100 km)
 - Sea water return?