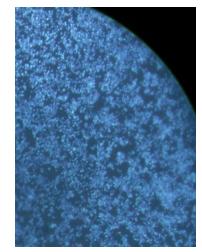

DESSC Meeting December 2008

Jason Science User Reports

MAR '08 KNOX18RR 07/9-08/13 R/V Roger Revelle, ROV Jason II

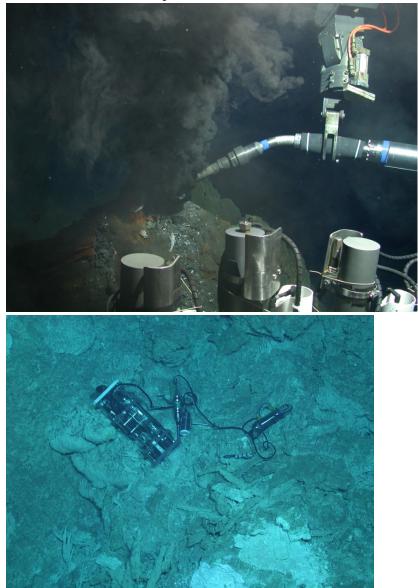
Rainbow, Lucky Strike, Lost city, TAG

Reysenbach: Diversity and Distribution of Thermoacidophiles and Hydrogen Oxidizers at Deep-sea Hydrothermal Vents


Seewald, McCollom, German: Organic Geochemical Investigation of Mid-Atlantic Ridge Hydrothermal Systems

Ding and Seyfried: In-Situ Chemical Sensors for Monitoring the Chemistry of Hydrothermal Vent Fluids at Mid-Ocean Ridges: Instrument Development and Field Applications

Involved colleagues from Portugal, China, Netherlands and USA


Microbiology

- ~70 sulfide deposits collected
- Enrichment culturing and DNA extractions
- Over 40 cultures- different growth conditions
- At sea, quantitative PCR (QPCR) of functional genes (interesting prelim results... methanogens prevalent at Rainbow, and not detected in samples from Lucky Strike)
- Were able to also monitor and ID cultures using QPCR
- New acidophiles, one already being sequenced by the Joint Genome Institute.

Geochemistry

- ~62 vent fluid IGT samples analyzed shipboard
- deployment of an in-situ pumping system that was designed for potentially concentrating small quantities of dissolved organics
- Multiple successful in situ pH and redox measurements
- Successful deployments of in situ pH data loggers

Numerous Ancillary projects: e.g.

- Lost City- Baross lab, Billy Brazelton
- Microbes of serpentinized rocks- Alexis Templeton lab, Lisa Mayhew
- engineering trial deployments of a rising plume particulate multi-sampler system developed by J. Breier
- Invertebrate collections
- Mapping of Rainbow (incomplete)
- Kadko- Radon measurements in fluids

Overall operations

- With the primary goals completed at Rainbow (Seewald et al, Reysenbach, Ding-Seyfried) and Lucky Strike (Reysenbach) vents, we anticipated that more time might be needed for deployment of the chemical sensors at Lost City (Ding-Seyfried). As these deployments went well, we were able to spend some time at TAG hydrothermal, before our scheduled transit to Snake Pit for the 3 final dive days.
- Winch failed at TAG, >48 hr to retrieve Jason II
- Reysenbach lost 3 dive days of her 10 dive program on the MAR.

FeMO

•An Iron Microbial Observatory at the Loihi Seamount

•Pls:

Katrina Edwards, USC
David Emerson, Bigelow
Craig Moyer, WWU
Hubert Staudigel, Scripps
Brad Tebo, OHSU

•Collaborators:

FeMO 2008

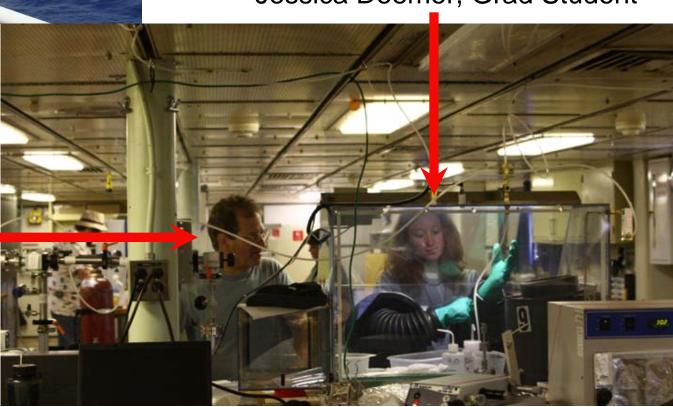
- Third of four sea-going research expeditions
- September 22- October 10
- R/V Thompson
- ROV Jason

Research Objectives

- Understand the diversity, form, function of the neutraphilic iron-oxidizing bacteria
- Elucidate thier role in iron deposition in the modern environment -> rock record
- Elucidate thier role in rock alteration -> biogeochemical cycles
- Why Loihi? We know they are there and are abundant - figure them out where they occur naturally "concentrated"

What we do

- Collect: Rocks, Mat samples, fluids -> ROV Jason + elevator runs; water column samples (plumes) -> CTDs
- Make Measurements: in-situ voltametry
 -> Brian Glazers "sniffer"; in-situ
 temperature loggers; microprofiling
- Map and image: SM2000 data and photomosaicing


This year

- FeMO our usual gig with some new twists and turns to keep things interesting, including a mid-point transfer of personnel
- Mark Kurz a rock-sampling petrology program
- Science party: 5 PIs (1F), 4 assistantlevel faculty collaborators (1F), 1 high school teacher, 1 NSF observer, 4 postdocs (3F), 1 international guest, 3 technicians (2F), 7 graduate students (5 F), 4 undergrads (1F)

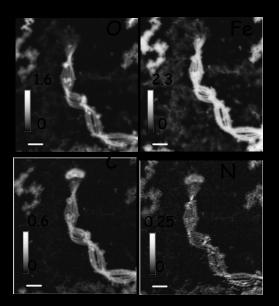
Jessica Deemer, Grad Student

Mark Kurz, WHOI

Expedition leader in training! went great

NSF observer, don't screw up!

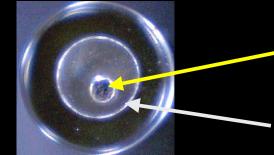
The Bio-Inorganic CHemistS


遐

Steamhoal


In situ redox chemistry Brian T. Glazer University of Hawaii

University of Hawaii Department of Oceanography glazer@hawaii.edu http://www.soest.hawaii.edu/oceanography/glazer/



Voltammetry 101

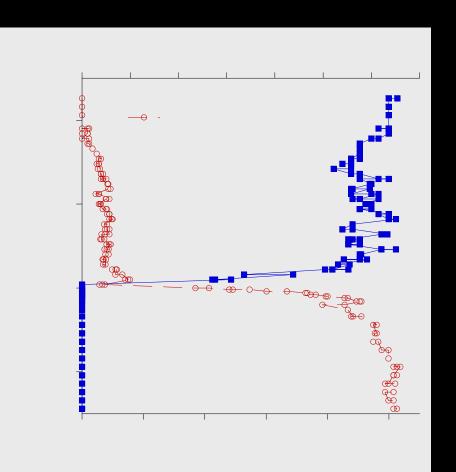
100 μm gold wire sealed in PEEK or glass using marine epoxy, plated with mercury

 O_2 , Fe²⁺, Mn²⁺, H₂S, H₂O₂, I⁻, S_x²⁻, S₂O₃²⁻, FeS_{aq}, Fe³⁺ are all measurable in one scan, if present

Au wire 100µm diameter

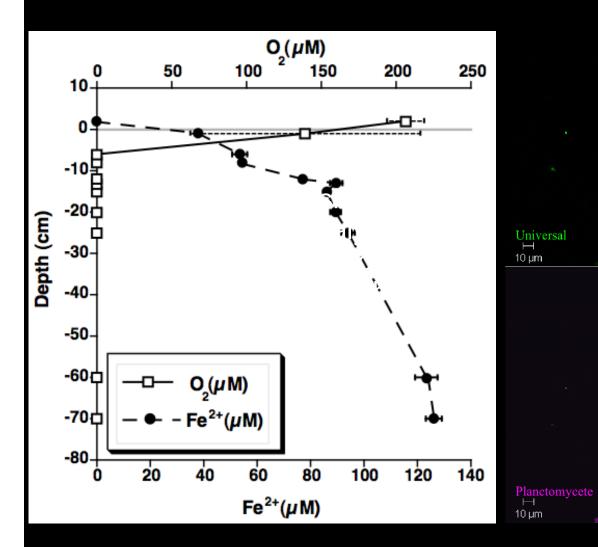
Polished epoxy surface

Seafloor microprofiling Fe-oxidizing mats



Micromanipulator capable of 0.05 mm steps

Seafloor microprofile of Fe-oxidizing hydrothermal mats



Seafloor "macro" profiles of vents and Fe-oxidizing mats at summit

T = 20 - 50°C O₂ ~ 130 μ M, rarely any HS⁻, Fe²⁺ ~200 μ M

FeMO Deep Site - 5000m

zeta-Proteobacteria 10 µm

FeMO 2009

