UNOLS Wire Rope Inspection Update

Shipboard Scientific Support Equipment: Oceanographic Cable NSF Grant No. 0555000

Presented by Rick Trask (WHOI)

Discussion Topics

- Electromagnetic Non-Destructive Testing System
- Research Vessel Wire Testing (Destructive)

Non-Destructive Testing

Dell

LMA-125 Wire Rope Inspection System

- High resolution electromagnetic wire rope inspection system
- Assists in identifying degradation of mechanical aspects of the wire
- Measures loss of metallic cross sectional area
- Identifies localized faults

Sensor Head

HNOLOGIES, In

 Rope is magnetized as it passes through Sensor Head

•Discontinuities (broken wire, corrosion pitting) distort the magnetic flux in the rope

NDT Sensor Head Opened with Wire in Track

Signal Console

- Gives a quantitative measure of the loss of metallic crosssectional area caused by corrosion, wear, broken wire, etc.
- A flaw can be localized to determine its actual nature
- Raw data exported to a laptop via USB port for real-time viewing
- Data analysis and charting using Excel
- Strip chart recorder available for real-time hard copy of raw data

NDT Equipment is relatively easy to transport to vessels for wire testing

NDT Set-up on site

- Locate Sensor Head must be parallel to wire
- Sensor Head clamps on the wire

 Angular changes due to level wind create challenges with regard to sensor placement

- Connect Sensor Head (25 ft. cable) to Signal Console
- Connect Signal Console (via USB) to Laptop
- Test set-up is done from Laptop

Test of .322" EM Cable R/V Oceanus March 2008

Sensor Head strapped to overhead beam to align with cable feed

Data Interpretation

- •Labor intensive to monitor in real time
- •Post-calibration necessary for data interpretation
- Interpretation following winding precludes real-time visual inspection of questionable areas

•Familiarization with signature of known defects needed

.322" EM with Wires added and removed to simulate changes in Metallic Area

Distance (meters)

.322" EM with Broken Wires

Challenges Ahead

•Focusing on evaluation of .322" EM cable

- Frequent use
- Greater opportunity to evaluate

•How to overcome limited support from manufacturer?

•How best to handle and interpret large data files from 10,000m long cables?

•Is it feasible to collect data periodically at sea during routine operations?

•How to use collected information to assist in decisions with wire and cable retirement?

UNOLS Vessel Wire Break Testing Update

Wire Tracking - follow specific wire/cable from cradle to grave

Relies on Vessel Operators' cooperation for info gathering

Winch and Sheave Information Needed from Vessels

Winch type, manufacturer and designation

Wire type/size(s) used on each winch

For each sheave:

- Tread diameter
- Wrap angle

UNOLS Wire Data Record

Reel No.: Date Distributed: Original Length: Distributed to: Vessel Name:

Test 1 Test 2 Test 3 Test 4 Test 5

Winch Description:

Test Date:

Cable Remaining (m):

Manufacturer's Breaking Strength:

Test Breaking Strength:

Test Notes:

No. of Deployments since New:

Maximum Tension since Last Test:

Typical Deployment Length:

Maximum Deployment Length:

Marker Length:

Reel Status:

UNOLS Vessels

BIOS: Atlantic Explorer **Duke: Cape Hatteras** Skidaway: Savannah **HBOI: Seward Johnson** LDEO: Marcus Langseth LUMCO: Pelican Moss Landing: Point Sur **OSU: Wecoma** Smithsonian: Urraca SIO: Melville **New Horizon Robert Gordon Sproul Roger Revelle**

* Wire samples provided

UDelaware: Hugh R. Sharp UHawaii: Kilo Moana UMiami: Walton Smith UMinnesota Duluth: Blue Heron **URI: Endeavor UWashington: Clifford A. Barnes** Thomas G. Thompson WHOI: Atlantis Knorr **Oceanus** NOAA: Ronald H. Brown **USCG: Healy** Polar Sea

Polar Star

Wire Break Test Results

09190703.LOG