

The Ocean Observatories Initiative (OOI) UNOLS Fleet Improvement Committee Meeting Update

October 10, 2007

Susan Banahan Associate Director

Status

- NSF/MREFC Capital Investment: \$331M over five years
- Operation Funding: Ramping to \$50M annually
- Design lifetime: 25 years
- Successful Conceptual Design Review in August of 2006
- Included in FY 2007 Presidential Budget
- Included in FY 2008 Request
- Preliminary Design Review scheduled December 2007
- National Science Board review in spring of 2008
- Projected July 2008 start.

Status

- NEPA Programmatic Environmental Assessment is being performed by JOI on behalf of NSF.
- Team is in place:
 - JOI (Consortium for Ocean Leadership, soon):
 System Integrator
 - NSF Advisors
 - University of Washington: Regional-Scale IO
 - UC San Diego: Cyberinfrastructure (CI)
 Implementing Organization (IO)
 - Woods Hole Oceanographic Institution (with OSU and Scripps): Coastal and Global-Scale IO

NSF Projected Funding for OOI (FY2008 Budget Request to Congress)

Concept/ Development Implementation Operations & Maintenance									
Regional-scale nodes	\$169M	51%							
Coastal and Global-scales	96	29%							
Cyberinfrastructure	29	9%							
Integration, management, education	21	6%							
Environmental Assessment	6	2%							
Management Reserve	10	3%							

 ✓4 Global scale nodes in Southern Ocean, Station
 Papa, Irminger Sea, Mid-Atlantic

✓5 Regional-scale nodes in NE Pacific, cabled platescale observatory

 ✓ Coastal-scale assets in Mid- Atlantic Bight shelfbreak and NE Pacific continental margin.

✓ Each scale incorporates mobile assets.

 ✓ Cyberinfrastructure to allow adaptive sampling, collaborative experimentation and analyses.

Cabled Nodes, March 2007

US Stage II

- June 2006 to March 2007, from 6 to 4 primary nodes
- No Connection to Stage I
- From 4 to 3 expansion/branching units
- Two Coastal Endurance Lines
- Desk-top study of cable routing.

Regional-scale Cabled Nodes – Star Design 5 primary nodes; 3 expansion nodes; 1 or 2 Endurance lines

Advantages to Star Design

- Less Cable (albeit more armoring)
- Higher bandwidth per node
- Higher power per node
- Simpler node design
- Three repeater-less segments; one segment with regenerator at bonus Midplate Node
- Higher availability during maintenance and repairs

Advantages to Two Landing Stations

- Less Cable
- Fewer Cable Crossings (36 eliminated -- ring configuration with one landing)
- Avoid crowded landing at Nedonna Beach with space not fitted out
- Move into existing space with modest refurbishment
- Availability of existing backhaul, power systems

Regional Scale Nodes

Endurance Array – Oregon Line

Along Newport Line
Surface

moorings at 3 sites

•Subsurface profiler moorings at all sites

•3 sites connected to RSN extension cable

•50 m site not shown

•Central WA; Grays Harbor

•Surface mooring at 80 m

•Subsurface profiler moorings at 80 and 25 m

•Contingent on costs

Endurance Array – Washington Line

 ✓4 Global scale nodes in Southern Ocean, Station
 Papa, Irminger Sea, Mid-Atlantic

✓5 Regional-scale nodes in NE Pacific, cabled platescale observatory

 ✓ Coastal-scale assets in Mid- Atlantic Bight shelfbreak and NE Pacific continental margin.

✓ Each scale incorporates mobile assets.

 ✓ Cyberinfrastructure to allow adaptive sampling, collaborative experimentation and analyses.

Global Site -- High Latitude Location

OINT

- Surface mooring provides platform for meteorology and airsea flux sampling, power generation, and satellite communications; 8-9 m long and 2.8 m diameter
- Subsurface mooring with surface-piercing upper profiler, inductively linked lower profiler, acoustic modem
- Cable and seafloor junction box can be added
- Flanking moorings with fixed sensors; gliders are planned
- Launched, maintained, recovered by UNOLS vessels

Global Site: Extended Draft Platform

- Initial Location: Mid-Atlantic
- •\$8M industry contribution
- Stable platform with deck space 10 m above sea surface, 10 kW diesel generation, EO cable delivers > 500 W to seafloor experiments
- Testbed site for power generation, VSAT communications, sensor technologies
- Offshore supply vessel and small tug to transport/install; UNOLS vessel for instrumentation

Initial Location: Pioneer Array

G JOINT OCEANOGRAPHIC Details of Pioneer Array INSTITUTIONS

- 4 EM / sub-surface profiling mooring pairs plus 4 subsurface profiling moorings.
- 3 AUVs (2 docking stations) to enable autonomous, adaptive sampling at scales up to tens of km.
- At least 6-12 gliders for sampling far-field variability.
- Near-real time communications & wind/solar/wave power.

Pioneer Array Moorings

Integrated Observatory Architecture

3 Marine Components

- Coastal 3 sites
- Regional 5 sites
- Global 4 sites

Cyberinfrastructure

- Integrated Resource Network
- Service Oriented Architecture
- Peer to Peer Resource Connectivity

Integrated Management

- Distributed Management
- Shared 24x7 Operations
- Policy based Governance
- Connection & Message Level Security

Extendable Research Facilities

- Virtual Teams & Laboratories
- Incorporation of Local Resources
- Semantic based Knowledge Management
- Machine to Machine Interaction Protocols

Joint Oceanographic

G

INSTITUTIONS

Legend	001		FY	2008	2008 FY 2009					FY 2010 FY 2011				FY 2012					FY 2013				
Design/Development					!																		
Build/Manufacture					ļ																		
Implementation					ļ																		
Test/Deploy/Commission					i																		
		Q1	Q2	Q3	Q4	Q1	Q2 Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2 Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
Cyberinfrastructure	-			R-1	Data Mo	mt. Dis	t and Contro								_								+
	-	7					R-2 Mana		Acquisi	ition													+
	-				İ				T.		Integrat	ed Data	Analyti	cs									t
					1									R-4 Integ	ated Mo	deling I	Network						t
	-				i												R-5	i Interact	ive Obs	ervator	y Sys		1
	-				1														Syst	em Acc	ept Test		T
	-				ļ																		T
Coastal Scale Observatory	-				Deve	elopmei	nt CSN																T
					Deta	il Desig	n & Systems	Eng - Endu	urance A	rray, Cei	ntral Ore	gon Line	Э										
					Deta	il Desig	n & Systems	Eng - Pion	eer Arra	y - Middl	e Atlanti	c Bight											
										ation CS													
	_				j									rs Harbor)									
	_				1			Pior	neer Arra	ay - Midd	le Atlant	ic Bight	/ Outer 0	Continental S	nelf								I
	_				<u> </u>																		
Regional Scale Observatory	_					elopmei			-		1												
	_				_	kbone C		-															4
	-				_		Shore Sta	_									_						4
	-				Paci		Shore Sta										_						4
	-				<u> </u>	Low	Voltage Node										_	_					4
	-				<u> </u>		Mooring [0.11							_	_					4
	-				i –				Secondary Cable Sensor Design						_						4		
	-				1																		4
	-				1			stall BB C						Build LV N			la at			1.1/ 1.1	es / J Box		4
	-				¦					arrenton	<u>ee</u>				ooring M			tall / Con		ring Inst		< c	+
	-									acific City				Secondar					IVIOU				-
	-				!			Dui			00			Secondar Sensor In			e / Test		Son	sor Integ	rotion		4
	-				<u> </u>										egration	7 1631			Jen				4
Global Scale Observatory	-				Dev	elopme	nt GSN											_					+
Global Scale Observatory	-						n & Sys Eng	1									_						+
	-			-	2010		Atlantic		Sou	thern Oc	ean 55	1/26											f
	-					Station Papa			Southern Ocean 55 % Iminger Sea												f		
	-				1				tion GS	SN			.g.s. 0.50						-				1
	-						Implementation GSN Mid Atlantic												1				
	-				-			Station Papa				Im	ninger Se	ea		-				1			
	-				-				I			Sout	hern Oc	ean 55 1/ S		5. 5							

OOI Estimated Days at Sea

		Days at Sea by year									
Infrastructure	Vessel Class	2009	2010	2011	2012	2013	2014	2015			
Atlantic											
	Intermediate		10	10	10	10	10	10			
Pioneer Array	Intermediate		13	12	12	12	12	12			
	< 80 ft.		8	18	18	18	18	18			
Irminger Sea	Global			23	23	23	23	23			
Mid-Atlantic	Global+ROV	19	19	23	23	23	23	23			
Pacific											
Regional-scale Nodes	Cable vessel		30	20	20	20	20	20			
	Global+ROV			30	60	60	60	60			
Station Papa	Global		19	19	19	19	19	19			
Southern Ocean	Global				23	23	23	23			
Endurance Array - OR	Global+ROV		7	7							
	Regional/Coastal			10	15	15	15	15			
	Regional w ROV				7	7	7	7			
Endurance Array - WA	Regional/Coastal			5	10	10	10	10			
, , , , , , , , , , , , , , , , , , ,	- 3										
Total by vessel class	Cable vessel	0	30	20	20	20	20	20			
	Global/Intermediate	0	32	54	77	77	77	77			
Estimated	Global+ROV	19	26	60	83	83	83	83			
UNOLS DAS	Regional/Coastal	0	0	15	25	25	25	25			
UNULS DAS	Regional w ROV	0	0	0	7	7	7	7			
	< 80 ft.	0	8	18	18	18	18	18			
			-								