- Right now we have NO UNIFIED cable SWL or winch/handling system design standards across the UNOLS fleet.
- Inspected v.s un-inspected ships, wide variety of systems and applications, complex operational implications/issues, etc.
- Problem for ship operators.
- Problem for science.

- ANY STANDARD right now is better than NO STANDARD!
- We can always modify later.
- Include as Appendix to new RVSS.

- In my view, the handling system design standard is INSPEPARABLE from the cable SWL standard.
- The cable/rope is part of the system.
- Sub-Chapter U uses the cable breaking strength as the "design load".

- Original authors of Sub-Chapter U were BRILLIANT!
- Knowing things would change in the future, "alternate standards" (like ABS or other) are allowed by Sub-Chapter-U itself.
- However they "overlooked" cable SWL!
- It's up to us as experienced R/V operators to decide.
- No one standard is perfect for every application.

Safety Meeting Discussion (RVOC Meeting – April 2007)

- Must be safe <u>and</u> "verifiable" that it's safe.
- Must be enforced both ship and science.
- Must follow completely if ABS used, then review, testing, and inspection requirements apply.
- Glosten to run example calculations illustrating both Sub-Chapter U and ABS standards impact on system design.
- What alternate means of strain relief are acceptable?
- Split standard? Set Sub-Chapter U for some systems/applications – alternates OK for others?
- When Operator's satisfied approve with USCG and ABS.

- Looks long and complex.
- Actually quite simple most of us are doing 90% of it now.
- Simply codifying what we do.

- **Definitions** (requested by RVTEC)
- General
- FS <u>5.0</u> or greater
- FS from <u>5.0</u> to <u>2.5</u>
- FS <u>2.5</u> to <u>1.5</u>
- Inspection and Testing (Rick Trask)
- Towing and Coring Ops (risk of entanglement)
- Background Information
- Examples (Requested by RVTEC)

Read the Background Information FIRST!

Ensure safe operations... AND ...Maintain operational flexibility.

ABS Standards

(ABS Rules for Building and Classing Underwater Vehicles, Systems and Hyperbaric Facilities (2002) – Appendix 4; "Certification of Handling Systems")

• Generally quite good – ABS Houston and London. Result is still a robust system.

- Typical "engineering" F.S. codified not simply "… a minimum of 1.5;…" (Shear, compression, bending, etc.)
- Dynamic effects considered using 1.75g factor for "unmanned operations".
- Modern capabilities can be incorporated "Auto Render"

ABS Standards

- FUNDEMENTALLY DIFFERENT from Subchapter-U Cable is NOT the "weak link" in the system. ABS view is that cable should never part. (4.7 FS on cable breaking strength)
- With Subchapter-U, there is a DIRECT LINK between cable breaking strength and structural design.
- NOT SO with ABS (or other classification society standards) based on "Design Load" or "maximum expected load" = package, cable, drag, weight of entrained mud and water, etc.
- This has advantage on systems using strong cables for band width or synthetics but small "expected loads".
- Would have similar results with systems like deep coring.

ABS Standards

• ONLY issue/problem for us is 4.7 FS on cable breaking strength.

Waiver granted by ABS Houston on R/V SHARP to reduce to 2.5 for "oceanographic research" following Lloyd's model developed by UK.

Also, ABS does not like portable equipment!