

EXPLICIT GOAL

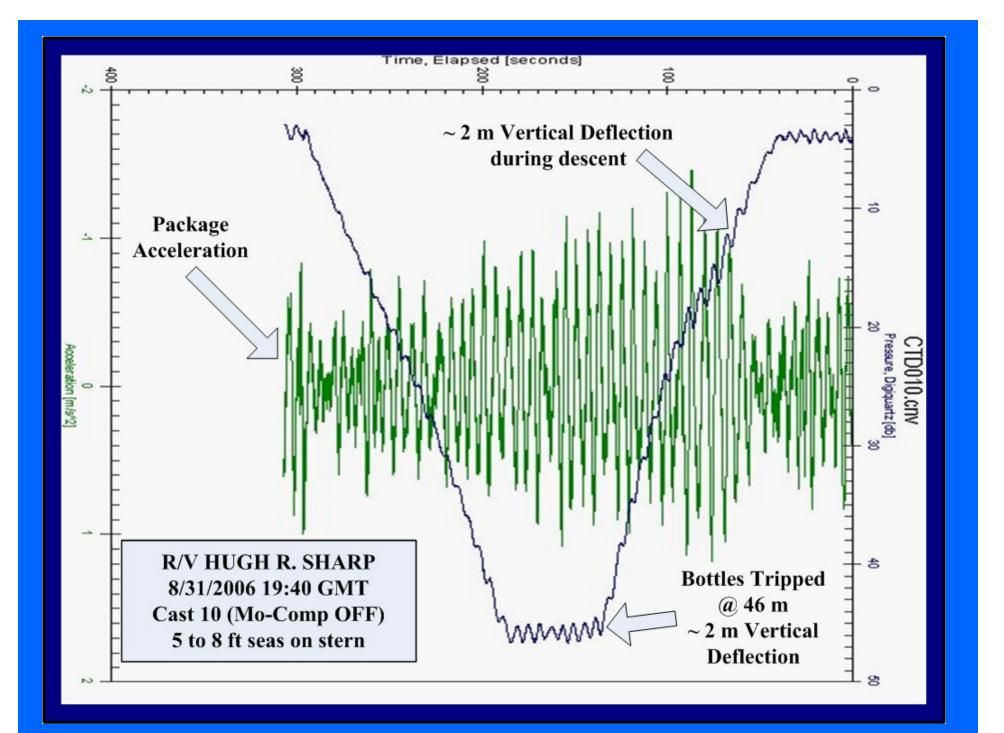
Review of existing technologies and systems to develop a set of standard Functional Requirements (specs) to show "Proof of Concept" for new capabilities.

~ NOT to evaluate any particular vendor~

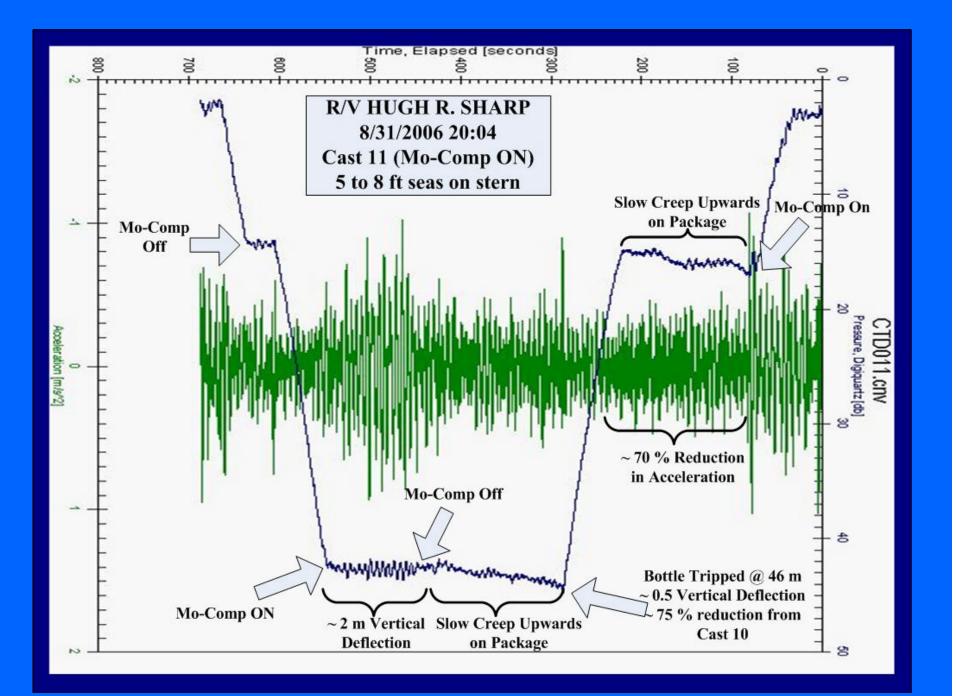
SECONDARY GOAL (On my part) "MYTH BUSTING"

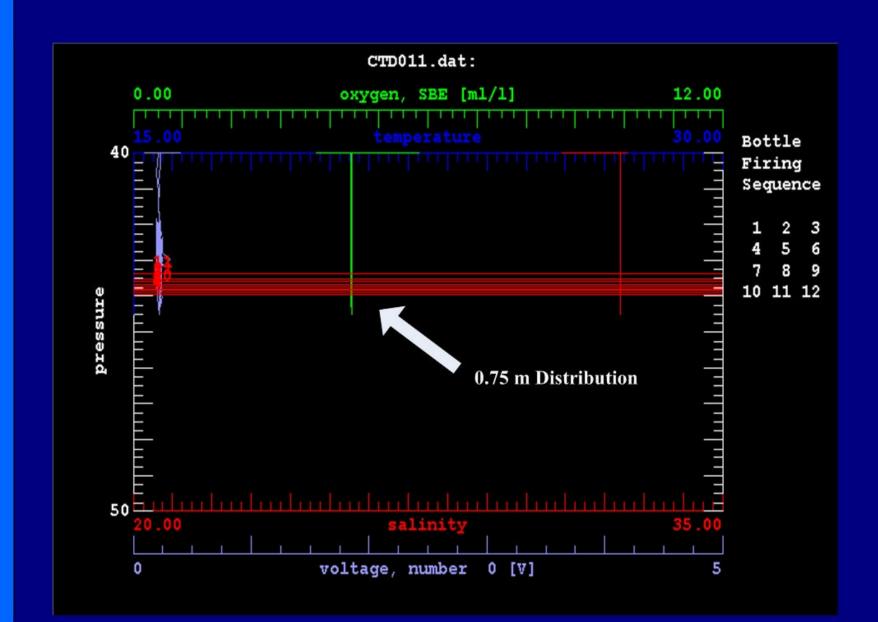
• "You can't put the docking head in the water! It won't survive!"

 "Winch will be HUGE if winch pay-in/pay-out used for mo-comp! Can't handle accelerations! Won't work!"


• "You need to have a locking mechanism to capture the package! Anything else is unsafe!"

- Two systems produced following "Functional Requirements" developed during the study (*Caley Ocean Systems, Ltd*):
 - R/V SHARP (Delivered funded by UD)
 - R/V KILO MOANA (In progress)
- Conceptually the same different handling appliance and size of winch.
- <u>Final Phase</u> Field evaluations after installation and systems in operation.


New Capabilities


- Motion Compensation by winch pay-in/pay-out reduces heave of package in water column for better data resolution and lower cable strain.
- Docking Head with "Auto-Position" capability no tag lines.
 Operator can set package on deck without assistance.
- "Tow Mode" (Auto Render) used for towing and in dealing with wire SWL issues.

Play Movies Here!

	CTD Accelerations				
[% Improvement	Maximum	Minimum	Average	*Standard Deviation
ſ	Overall	51.7%	38.4%	76.8%	62.6%
	Descent	60.2%	68.5%	124.5%	77.0%
	At Depth	47.2%	23.1%	205.9%	65.9%
l	Ascent	33.8%	39.8%	49.9%	57.6%
ACCELERATIONS (m/s ²)	Motion Compensation ON	Maximum	Minimum	Average	Standard Deviation
	Overall	0.5700	-0.9000	-0.0011	0.1549
	Descent	0.4700	-0.4600	0.0053	0.1352
	At Depth	0.5700	-0.9000	-0.0047	0.1690
	Ascent	0.49000	-0.59000	-0.00292	0.15019
	Motion Compensation OFF	Maximum	Minimum	Average	Standard Deviation
	Overall	1.1800	-1.4600	-0.0046	0.4136
	Descent	1.1800	-1.4600	-0.0216	0.5868
	At Depth	1.0800	-1.1700	0.0044	0.4959
	Ascent	0.7400	-0.9800	-0.0058	0.3539
		F	or each cast, depth $\geq 15m$		

*The standard deviation is defined as the average amount by which scores in a distribution differ from the mean, ignoring the sign of the difference. **Data taken from two back-to-back CTD casts to the same depths. For comparison purposes, only data at or deeper than 15 meters were analyzed

Thanks to: Tim McGovern, UH

Control Panel

Issues To Be Evaluated

- *Cost* was it worth it? (\$500 \$750K)
- Complexity can we handle it? (no pun intended!)
- Motion Compensation does it work? Is it of benefit to BOTH vessel and science? <u>Appears so</u> but:

Need tests with greater depth/higher tensions

- Docking Head Does it work? Is it safer? <u>Appears so</u>.
- "Tow Mode" (Auto Render) Does it work? Is it safer? How do we test? Can it satisfy USCG and ABS? In Progress.
- ABS Standards Comparison with same system under Sub-Chapter U. Weight savings? Greater Operational flexibility?

In Progress.

Step Forward?

Time will tell . . .

Final Word (Related Subject)

- <u>DRAFT</u> UNOLS Wire Safe Working Load (SWL) standards currently under review by RVOC Safety Committee.
- Reviewed by RVTECH on October 16th
- Eventual Inclusion in RVSS