

ICCAGRA May 2006

NASA Update

AGENCY UPDATE

AGENCY UPDATE

WWW.NASAWATCH.COM

Science Mission Directorate New Organization Chart

UAS

Suborbital Science Programs

Add to the understanding and prediction of the Earth system. Suborbital observations fill time and space gap between surface observing networks and orbital platforms.

<u>Objectives</u>

 Development of new space sensors and new remote-sensing techniques.

Satellite calibration/validation.

 Targeted observations of ephemeral phenomena with variable temporal and spatial scales.

 Atmosphere/near-space in-situ observations.

 Improvement and validation of predictive Earth process models using satellite data

•Next-generation scientists with handson sensor hardware and field experiment experience.

Program Structure & Organization

Program Baseline Budget

	FY05	FY06	FY07	FY08	FY09	FY10	FY11
FY06 PFP	36.04	34.96	32.63	32.59	30.08	30.17	
FY05 Op Plan Changes	4.5						
FY05 WB57 Upgrades	3.8						
FY07 PFP	44.3	34.17	35.31	35.28	32.81	32.89	32.89

Aircraft Milestones

	Feb-06	Mar-06	Apr-06	May-06	Jun-06	Jul-06	Aug-06	Sep-06	Oct-06	Nov-06	Dec-06	Jan-07
Transition Milestones												
Transition DC-8	l											
Catalog Aircraft MS												
Core												
Aerosonde	A	ļ							Lake Erie	, NOAA I	Hurricane	
	TCSP]
DC-8						/R Vo			ļ			
	SRC Entry	INTEX-B	3	Ť								
ER-2	\wedge											
	TCSP											
P-3B	/ 🗟 📃			R]							
	A	rctic 2006	-	RadS	STAR-A							
Affiliated												
WB-57												
						2	<u>k ND7</u>	HALO/FA	LCON			
Procured												
Twin Otter					Ţ							
						IRIS						
Sky Research	Ŕ				<u>ر</u>							
		INTEX-B		Vild Fire	Ĺ							
DOE B-200				6	11/10							
				L		\sim						
Dynamic Aviation B-200					R	<u> </u>						
						RAS	L					
		Tentativ	е		Mission	Ops						
		Unavaila	able		Cancele	ed						

WB-57 Activities 2005-2006 NASA 926

	2005 Activities	Approx. Hours
06 December 04 – 17 February	Integration & test flights for CARTA & Harvard isotopes instruments	46.1
26 February – 8 April	CARTA 2 mission to Costa Rica	122.4
23 May – 2 June	WAVE test flights	8.2
6 – 24 June	AVE Houston	44.5
27 June – 8 July	Water Isotope Intercomparison Flights	17.6
9 – 28 July	WAVE mission STS-114 launch	21.8
5 – 9 August	WAVE deployment to Costa Rica for STS-114 landing	12.1
24 – 29 August	PSR test flights	2.6
6 – 23 September	AVIRIS flights (Katrina, Woodpecker, Ames deployment)	46.8
10 October – 11 November	Phase Maintenance	4.2
14 November – 9 December	BACN test flights at Miramar (Battlefield Airborne Communications Node)	14.9
12 – 18 December	NOAA Water Mission Part 2 & CRAVE test flights	15.4
	2006 Activities	- A-
3 January – 11 February	CR-AVE mission	75.5

Total Hours FY05 = 425.8 CY05 = 375.4

Note: Some hours (training, currency, maintenance, etc.) are not included in the activities list above.

- FY05 Major Accomplishments:
 - TCSP: July '05. 16 missions, 107.2 hours from Costa Rica.
 - Payload: AMPR, CRS, EDOP, HAMSR, LIP, MTP, MAS
- FY06 Major Activities:
 - Periodic Depot Maintenance (PDM) complete on NASA 806
 - Calipso validation mission this summer
 - TC4 deployment to Guam Jan '07
 - New Business Model: Integration of ER2 into Dryden Aircraft Pool
 - More cost savings through sharing of personnel and resources
- USAF U2 phased fleet retirement--"windfall" for ER2:
 - Free spare parts lower flight hour fees
 - Potential to take possession of engines
 - Eliminate lease fee paid to the USAF lower flight hour fees
 - Upgraded Airframes for NASA?

Mission Dates Flt Hrs Arctic Ice Mar 2006 50

DC-8 Accomplishments

Sky Research Caravan

DOE B-200

Hurricane Wind Comparison Aerosonde Flight - Ophelia 16 Sep. 2005

FIRST EVER UAV TO FLY INTO A TROPICAL CYCLONE

•NOAA WP-3D Stepped Frequency Microwave Radiometer (SFMR) Surface winds in light blue, Aerosonde winds in black, buoy winds in dark blue.

•Aerosonde closest approach to wind center was 30 nm southwest and 25 nm northeast. Peak winds at 2500 ft were 65 kt southeast of center and 75 kt north of center.

•Excellent agreement was found between buoy, SFMR and Aerosonde winds adjusted to surface values. SFMR winds SW of center were within 10 min of aerosonde.

Science Schedule

Science Schedule

			Qtr 1, 2006	Gtr 2, 2006	Qtr 3, 2006	Qtr 4, 2006	Qtr 1, 200
D	Task Name	Hyperlink	Jan Feb Mar	Apr May Jun	Jul Aug Sep	Oct Nov Dec	Jan
49	Satellite Validation		•				
50	Stardust ReEntry Observation Campiagn	<u>68002</u>	DC-8				
51	CALIPSO/Cloudsat Launch			F			
52	EOS Cross Validation VNIR-SWIR	<u>62003</u>			ER-2,MAS,MASTER,	AirMISR	
53	CALIPSO/Cloudsat Cal/Val	<u>62008</u>			CPL,MAS,CP	S,ER-2	
54	Validation of EOS Mid and Thermal Infrared Data	<u>62004</u>				ER-2,MASTER,MAS,SHIS	
55	Studies of Biosphere Atmosphere Interactions with a MODIS GCM	<u>6T012</u>				Twin Otter,AVIRIS,DCS	
56	WAVE 2 - STS-121						
57	WAVE Patrick deployment						
58	WAVE Reentry (possible deploy				Ĩ		

			Qtr 2, 2006			Qtr 3, 200	16	Qtr 4, 2006		
ID	Task Name	Hyperlink	Apr	Ma	y Jun	Jul	Aug	Sep	Oct	Nov
39	Surface									
40	Validation of MASTER on B200 at Lake Tahoe CA/NV	<u>68002</u>						MA	STER,B-20	0
41	Southern California Fault Assesment	<u>68003</u>			MASTE	R,B-200				
42	Test Flights of UAS Wildfire Sensor and IMM/CDE	<u>6M001</u>	• 1	12-Cha	nnel,IMM,PO	S-AV				
43	Test Flights of UAS Wildfire Sensor :	6M001			12-C	hannel,IM	M,POS-AV			
44	An AVIRIS Study to Support the Reb	<u>6VV301</u>	1						WB-57,A\	/IRIS,DCS
45	Western States 24 Hour UAS Wildfire Mission	<u>6U001</u>						1:	2-Channel	,IMM,DCS
46	ASTER Mapping Improvements by Modeling Spectral-Spatial Scaling of HIS	6B303 6T303 62303							MASTER,	AVIRIS,TI
47	Carbon Capture Program	<u>6B004</u>]					B-200,	MASTER	

Science Schedule

			Qtr 2, 2006		Qtr 3, 2006			Qtr 4, 2006		
ID	Task Name	Hyperlink	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov
12	Carbon			-						,
13	UAV for Sub-Pixel Land Cover Attributes and Dynamics	<u>6A001</u>				Aero	sonde			
14	Fluxnet Global Network of Carbon, ∕Vater and Energy Flux	<u>6T014</u>			Twin 0	tter,AVIRI	S,DCS			
15	Mechanisms Controlling Annual, Interannual, and Decadal Changes in Calfornia's Carbon Budget	<u>6T016</u>			Twin Ott	er,AVIRIS	,DCS			
16	LVIS Mapping Ivory Billed Woodpeck	<u>6B001</u>			B-2	200,LVIS				
17	LVIS Sequoia National Forest	<u>68001</u>				B-2	00,LVIS			
18	Multisite Integration of LIDAR and Hyperspectral data for Improved Estimation of Carbon Stocks and	<u>6T006</u>			Twin 0	tter,AVIR	IS,DCS			
19	Habitat Identification of the Ivory Billed Woodpecker using Hyperspectral Imaging	<u>6//007</u>				WB	-57,AVIRIS	5,DCS		
20	Huricane Katrina Hyperspectral and Cirrus DCS Damage Assesment	<u>6V/005</u>				WB	-57,AVIRIS	S,DCS		
21	Scaling and Saturation of Ecosystem Carbon UptakeThrough Integration of Multi-Scale Remote	<u>62006</u>						ER-2,A	/IRIS	
22	Effects of insect defoliation on regional carbon dynamics of forests	<u>62007</u>						ER-2,AV	IRIS	
23	In-flight Fusion of Hyperspectral and LIDAR Data for NASA TEP	<u>6T009</u>							Twin Ott	er,AVIRIS
24	Hyperspectral Measurements of Surface Soil Inorganic Carbon and Biological Crust under Climate Change Treatments at the NDFF and MGCF	<u>6T015</u>								Twin Ot

SUBORBITAL SCIENCE UPDATE - INTEX-B NASA DC-8, Sky Research J-31, NSF C-130, DOE G-I, LaRC B200

Intercontinental Chemical Transport Experiment (Part B) – Deployment Schedule:

Houston: Hawaii: Alaska: Mar 1-20 Apr 18-27 May 1-12

21 sensors •11 probes •2 lasers •Species measured: •HOX, NOX,HNO4, SO2, O3, HCHO, H2O, CO, CO2, CH4 •Aerosols

March 19 Flight Plan:

- •Intercomparison with NSF C-130
- •Coordinated spiral with J-31
- Validation of EOS Aura TES & OMI

INTEX-B Mexico City Pollution from DC-8, Mar 16

SUBORBITAL SCIENCE UPDATE – Arctic 2006 NASA P3-B

Proposed 2006 Alaska Sea Ice Flights

Alaska & Greenland:

•P3-B with Kansas U snow radar, NOAA PSR, IIP D2P radar altimeter, ATM 4 laser altimeter

- •Validate EOS Aqua AMSR-E, ICESat, Envisat
- •All planned flight tracks achieved

SUBORBITAL SCIENCE UPDATE – NSF Maldives Autonomous UAV Campaign, ACR Manta UAS

Manta UAS •Advanced Ceramics Research, Arizona •Payload 15 lbs, 775 cu.in. •Endurance 6+ hours •Ceiling 16K ft •Airspeed 40kts Maldives Hanimadhoo Island •3 Manta UAS in stacked formation, above, in, and below cloud •Aerosol properties •Black carbon •cloud microphysics

Broadband & spectral irradiances

NASA contributed funding, advised on mission success and flight operations procedures. Lessons learned report coming.