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Global Sulfur Budget
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Dimethylsulfide (DMS)
Important component of Earth’s biogeochemical sulfur 

cycle: major conduit of S, abundant in the ocean, to 
terrestrial ecosystems where it is often a limiting nutrient.

Its metabolic precursor dimethyl sulfonium propionate 
(DMSP) is a Zwitterionic compound believed to be used 
in osmotic regulation.  

Only a small fraction of oceanic DMS is released to 
the atmosphere.

The principal component of the ‘smell of the sea’, and 
is thought to be widely supersaturated in seawater.

Oxidation end products H2SO4 & MSA serve as 
important CCN components (τchem ~ 2 days).
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CLAW Hypothesis
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Estimates of global source 
vary greatly: 15-109 Tg/yr

Its precursor dimethyl
sulfonium propionate (DMSP) 
is thought to be important in 
osmotic regulation 
(antioxidant).  

Senescence, viral attack, or 
grazing ⇒ DMSP, enzymatic 
cleaving ⇒ DMS ⇒ air/sea.

Oxidation end products 
H2SO4 & MSA serve as 
important CCN components 
(τchem ~ 2 days).
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DYCOMS-II
DYNAMICS AND CHEMISTRY OF MARINE STRATOCUMULUS

Stevens et al., BAMS, 84 (2003)

Fast DMS instrument (Drexel) 
used to measure flux profiles & 
entrainment using eddy-
covariance

Direct EC measurements 
indicate modest and ‘typical’
surface fluxes (~2 µmol m-2 d-1)

Scalar budgets of DMS are 
thwarted by large mesoscale 
variability encountered
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Gas exchange
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Equilibrium MBL Model
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DMS Gradients
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Upstream Source
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Extra PBL Variance
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Importance/Evidence of Extra Variance

Jodwalis & Benner [JGR, 1996] report DMS fluxes of 21-28 
µmol m-2 d-1 using a variance technique, as opposed to 1-13 µmol 
m-2 d-1 [Blomquist et al., 1996] estimated from [DMS]sw

Lenschow et al. [JGR, 1999] compared 3 different flux 
estimation techniques and found the variance to yield the largest

Lewis et al. [ACP, 2005] noted that DMS relative deviations lie 
well above the Junge curve of other species measured 
simultaneously.

‘Variance technique’ for estimating surface fluxes (from observed σ2, a 
surface flux can be inferred from universal similarity relationships)

Instrumentalists may mistake atmospheric ‘noise’ for internal ‘noise’.

Relationship (Junge) between trace gas relative variance and 
atmospheric lifetime.
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Source of Variability
Variable entrainment

Heterogeneous surface sources

Internal sources of variance generation 
(Jonker et al., 2005)

[Patton, 2005] [Jonker, 2005]
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DMS Variability in ocean surface
Tortell [2005] using a MIMS method measured 
variability of DMS in seawater in the Bering Sea.
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DMS Gradients
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Strongly-Coupled Shallow PBLs

↓[Lentz, 1992]

↑[Dorman, 2000]
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Conclusions
DMS fluxes have been measured directly by eddy covariance on 

the NCAR C-130.   

The concentration gradients observed indicated strong DMS 
sources offshore of the California Current (in ecosystems well aged 
from their upwelled origins.)  

‘Extra’ variance has been documented in DMS measurements 
from DYCOMS-II, which is most likely related to the spatial scales of 
sea water DMS variability.

Careful Lagrangian airborne measurements can be used to better 
quantify the exchange between MBL and free troposphere, and 
surface air-sea exchange as well.

Aircraft have the ability to cover much more area in  
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Geologic Ramifications

Fig. 7. Schematic representation sulphur cycle at 
Namib Desert/Atlantic interface. 

Proposed sulphur pathways (solid arrows) 
Potential sulphur pathways (dashed arrows). 
Small numbers indicate range of δ34S 
1a = DMS release from phytoplankton; 
1b = NSS sulphur (Calhoun et al., 1991);
2 = SO4 release in sea spray; 
3 = mixing of aerosols in the atmosphere; 
4 = dry aerosol deposition; 
5 = wet aerosol deposition; 
6 = runoff and gypsum formation; 
7 = infiltration and groundwater flow; 
8 = capillary rise and gypsum precipitation; 
9 = gypsum dissolution and infiltration; 
10 = gypsum dissolution and runoff; 
11 = aeolian gypsum dust dispersal; 
12 = in sediment sulphide/sulphate formation; 
13 = subcontinental dust input; 
14 = sulphide oxidation by groundwater; 
15 = H2S release to atmosphere.

[Eckardt & Spiro, 1999]
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