Development of a Hybrid Remotely Operated Vehicle (HROV)

for Oceanographic Operations to 11,000m Depth

Andrew Bowen, Dana R. Yoerger, Louis L. Whitcomb* Applied Ocean Physics and Engineering Dept. Woods Hole Oceanographic Institution

> *Professor, Department of Mechanical Engineering Johns Hopkins University

> UNOLS Arctic Icebreaker Coordinating Committee March 31, 2005

AICC 3/31/2005

HROV Project Team

- 💉 Mr. Andy Bowen
- Z Prof. Louis Whticomb
- 🖌 Dr. Dana Yoerger
- Mr. Jonathan Howland
- Mr. Chris Young
- \varkappa Ms. Barbara Fletcher
- ∠ Mr. Chris Taylor
- 🛛 Mr. Don Peters
- 🗾 Dr. Al Bradley

Principal Investigator Co- Principal Investigator Co- Principal Investigator Lighting and Imaging SPAWAR Light Fiber SPAWAR Project Manager Overall Electrical System Design Overall Mechanical System Design Propusion and Energy Storage

AOPE/DSL Design Staff as required (approx. 15 eng & tech staff)

HROV Advisory Committee

A panel of six oceanographic research scientists and engineers is providing guidance on how the HROV will best serve the scientific community's research needs

Melanie Holland
 Lawrence Lawver
 Chuck Fisher
 Deborah Kelley
 Keir Becker
 Jim McFarlane

Arizona State University University of Texas at Austin Pennsylvania State University University of Washington University of Miami International Submarine Engineering Ltd, British Columbia, Canada

Jason I

- Development 1986
- First Dive: 1988
- Retired: 2001
- 253 dives
- 4700 hours of operation

Jason II

250 lbs. of payload, with 300 lb. tool sled (Jason I had about 75 pounds)

Two spatially correspondent master-slave manipulators that can lift a person at full reach -- one is "force reflective"

 500 lbs. of thrust in each axis (Jason I had 150 pounds)

- Proven operations to 6,500 meters (deepest diving operational ROV worldwide)
- Heavy lift capability 1.5 ton at maximum operational depth

IOT 3/3/2005

Autonomous Benthic Explorer (ABE)

IOT 3/3/2005

Evolution of a Deep Ocean Exploration Vehicle

ABE: 6,000m AUV

Jason 2: 6,500m ROV

HROV 11,000m

Global Ocean depth chart

Global Ocean depth chart

 -10000
 -7000
 -6000
 -4500
 0

 -0000
 -5000
 -4500
 0

 -0000
 -5000
 -10000
 -000

 -0000
 -5000
 -10000
 -000

 -0000
 -5000
 -10000
 -000

 -0000
 -5000
 -10000
 -000

 -0000
 -5000
 -10000
 -000

 -0000
 -5000
 -10000
 -000

 -0000
 -5000
 -4500
 0

 -0000
 -5000
 -10000
 -10000

 -0000
 -5000
 -4500
 0

 -0000
 -5000
 -5000
 -5000

 -0000
 -5000
 -5000
 -5000

 -0000
 -5000
 -5000
 -5000
 0

 -0000
 -5000
 -5000
 -5000
 0

 -0000
 -5000
 -5000
 -5000
 0

 -0000
 -5000
 -5000
 -5000
 0

 -0000
 -5000
 -500

Photo # NH 96799 Trieste preparing for mid-Pacific operations, 1959

海洋科学技術センターの船舶等の概要

支援母船「よこすか」

全長 105	.2 m
匾 16.0m	1
深さ 7.3 m	n
総トン数	4,439トン
航海速力	約16ノット
航続距離	9500マイル
乗船者数	60名

R. V. Yokoska

HROV Operations

AICC 3/31/2005

HROV's Two Configurations

<u>AUV Mode</u> 1120 kg (2460 lb) Air Wt 50 ceramic spheres

2.5 cu ft syntactic foam 50 lb (wet wt) payload

<u>**ROV** Mode</u> 1510 kg (3320 lb) Air Wt 74 ceramic spheres 5 cu ft syntactic foam 100 lb (wet wt) payload

AICC 3/31/2005

HROV Operational Goals

Benthic Margins below 6,500m
 Under Ice Operations
 Event Response
 Marginal Environments
 Public Outreach

Science Mysteries Under the Polar Ice Caps

- Characteristics of vents hosted in ultra-slow spreading crust
- Serpentinization, cold upper mantle
- ∠ Deep axial valley
- Hydrographic isolation
- 🛛 Vent fauna

The Gakkel Ridge

- The slowest-spreading mid-ocean ridge on Earth (full rate 1.33 cm/year at its western end, near Greenland; 0.6 cm/year at the Laptev Sea shelf)
- Geographically and oceanographically isolated from other midocean ridges

HROV Science Mission Requirements

- High resolution bathymetry
- High quality imagery
- ✓ Water column sensing (e.g. CTD, OBS, methane)
- ✓ Water Sampling (hot/cold)
- Hi/Lo temperature probes
- Z Push coring
- Heat-flow probe (1 to 1.5 M long)
- Geotechnical/Geochemical
- Rock sampling/drilling
- Biological sampling (grabs/boxes)
- Flexible science sensor payload interface

Scientific Sensors

SeaBird 49 FastCAT CTD

- ∠ 2 CTD's on vehicle
- Includes integral pump for T/C sensors
- ∠ Pressure: 0 11,000 m, accuracy 0.1% full scale range
- Conductivity: 0 to 9 S/m, accuracy 0.0003 S/m
- ∠ Temperature: -5° to +35° C, accuracy 0.002° C
- Honeywell HMR2300 3-Axis Digital Magnetometer
 - ✓ Range ±2 gauss, <70 µgauss resolution</p>
- Optical Backscatter Sensor
 - Manufacturer TBD
- ✓ 300 KHz Doppler Sonar RDI Workhorse ADCP
- 675 kHz Scanning Bathymetric Sonar Imagenex

Optical Imaging Functional Breakdown

Configuration	Minimal Resolution	Lighting	Storage
Mosaic collection and stills in AUV or HROV mode (dynamic range)	1.4+ megapixels	Survey, strobed, monochrome	Internal hard disk + uplink (thousands of images)
Hi-resolution color stills for AUV and HROV sampling modes	3.3+ megapixels	Strobed Full-spectrum	Internal, uplink +
Quality color video in HROV approach and sampling modes (workspace)	>400 TVL	Video frame rate (fractional)	Uplink
High sensitivity B&W video for HROV approach and sampling modes	>400 TVL	Video frame rate (fractional)	Uplink

Preliminary Manipulator Design Summary

6 degree-of-freedom (DOF) serial manipulator
11,000m Depth Rated
1.3 m (~51 in.) in length
45 kg (100 lb) max dry weight / 4.5 kg (10 lbf) max wet weight
Design tip force of 50 N (11 lb)
Design tip torque of 54 N-m (40 ft-lbf)

•Specialized end effectors placed on manipulator prior to sampling task (may be same as sampling container)

HROV Operations Summary

- Two 20 foot shipping containers
- Five person operations team
- ∠ 24 hour operations:
 - ∠ 48 hour mission
 - ∠ 12 hour turn-around
- Zeric Day rate ~\$10,000/day (\$US) for 11,000m operations.
- AUV Mode 2.5 to 3 times ABE coverage
- ROV mode over-the-side operations requirements similar to CTD operations.
- ROV horizontal footprint TBD (~20km).

HROV Project Budget Overview

HROV Funding Sources

Cost Breakdown

	<u> </u>
NSF/NOAA	\$4,776K
USN/SPAWAR	\$1,098K

Main Electronics and Battery Housings

Mechanical Characteristics

Ceramic/Titanium (Grade 5) construction

Titanium hemispherical endcap (flat for single penetration shown)

Ceramic/Titanium Design: 90 lbs air weight 135 lbs buoyant water weight

Comparable All-Titanium Design: 300 lbs air weight 80 lbs water weight

AICC 3/31/2005

Seamless Ceramic Buoyancy Spheres

Custom Technical Ceramics, Arvada, Colorado

Nominal Dimensions

• OD	10.2"
Wall thickness	0.188" min, +0.04" variation
• Weight	4.1 kg (~9 lb)
 Displacement 	20.6 lb
Buoyancy	11.6 lb
Wt/Disp Ratio	~0.4

Slip-molded, one-piece, 0.999 Alumina

- 10 sample spheres procured
- Pressure tests conducted at SWRI
- 10 cycles to 18 ksi with acoustic emission monitoring
- Destructive test to 30 ksi (chamber failed at 29,369 psi)

AICC 3/31/2005

Mission Concept: Self Powered Vehicle with Lightweight Fiber Optic Tether

0.8mm Diameter Fiber Optic Tether

12 Mile Fiber Optic Tether Pack IOT 3/3/2005

Candidates for HROV Tether

0.25 mm Polymer Buffer 0.12 mm Optical Fiber ______ Generation ______ Buffered Optical Fiber

0.78 mm Anti-Abrasion Jacket 0.76 mm FRP Strength Member0.25 mm Polymer Buffer 0.12 mm Optical Fiber -

Fiber Optic Micro Cable (FOMC)

IOT 3/3/2005

Buffered Fiber Validation

Mission Parameters:

- ∠ 0.25mm Fiber Tether
- Vehicle descends from surface to 11,000m for 6 hours at 30 m/min (0.5 m/sec or 1 knot).
- Remain resident 36 hours on sea floor.
- At T=42 hours, vehicle would cut cable and surface autonomously.
- Currents: 0.25 m/s surface current for top 200m, linearly decreasing to 5cm/sec at sea floor.
- Bare fiber tether payout tension = 6.7
 N.
- ∠ Tether Drag Model:
 - ∠ CDn = 1.5
 - ∠ CDt = 0.7 / Re

leaf_11000m_06.67n.mat TIME=0.0 sec	c (0.00 hour)
110000	
10000 Top:	
X=0.0m Z=11010.0m	
9000 - H = 10.1 6N - V = 0.0 m/s	
8000 Angle-0.2 deg	
7000	. E
7000	5
6000 Cable) =1 013m	
5000 MaxT≑10.16N	μ
3000	a 4 4000
4000	
ann Bottom:	<u>N</u>
X=0.0m Z=11009.0m	2000
2000 - F = 10.3 GN - V = J.UM/S	T (N)
1000 *Amale 40: 3: dea	u water (m/s) (black)
ringie – 5.6 dag	v water (m/s) (greęn)
	0 10 20
X Cable Position (m)	tension colormap (N)
Ê 20 c	· . · · · · · · · · · · · · · · · · · ·
5 10	
	10.15860.15840.1584
[₩] 0 2 4 6 8 10	12 14 16
Time (seconds)	x 10

Fiber Tether Deployment Test November 1-2, 2004

IOT 3/3/2005

Fiber Tether Deployment Test Test Conditions: November 1-2, 2004

- Water depth 2000 m, flat sand and mud seafloor
- Cable pack mounted on elevator
 - Free-fall through water column, 30 m/min
- Cable pack mounted on deck of ship
 - Deploy cable through weighted flex-hose
- Instrumentation
 - Øptical Time Domain Reflectometer on ship to monitor optical fiber
 - Bending buffered fiber at pack allows measurement of distance paid out
 - ADCP mounted on elevator (upward firing)
 - ADCP on ship
 - Long baseline acoustic navigation

Fiber Tether Deployment Test

Elevator canister mounted on top of elevator

Break-Away bell mouths

IOT 3/3/2005

CP Current Profile:

Preliminary Current Profile from ADCP data from November 2004 Fiber Tether Trials in San Clemente Canyon

TOT SISIZOUS

San Clemente Island Test Results

FOMC survived for 4 hours until test was terminated

- Buffered Optical Fiber survived for 3:45
 - Fiber broke 112m from end of flex hose, close to ship
 - Fracture analysis of broken end
 - Cause: excessive tension caused by build-up of adhesive from FOMC in flex-hose combined with ship motion
 - ✓ No evidence of external damage due to marine life

Project Milestones to Date

- 11KM Floatation development complete:
 - Syntactic SG of .58
 - ∠ Ceramic sphere SG of .40
- Work Space design tools in place.
- Electric Manipulator development underway
- Prototype LED lighting array built and tested
- Microfiber tether development:
 - Pressure testing of candidates
 - Modeling
 - Initial field tests
- Conceptual vehicle development underway
- Main pressure cases in production

Project Goals for CY 2005

- Complete conceptual development of both vehicle configurations leading to detailed structural design
- Complete manipulator design and have both hardware and software components in test
- Complete fabrication and test of main and auxiliary pressure housings
- Make final choices on propulsion and have fabrication underway
- Jason in water tests of LED lighting
- Purchase of vendor supplied components
- Control system development
- Final electrical complete with fabrication underway
- Attend AICC meeting in March -- develop ice operations
- Second elevator test (deep) with addition of shallow AUV tests

HROV Project Team

- Mr. Andy Bowen
- Scheme Prof. Louis Whitcomb
- 🖌 Dr. Dana Yoerger
- Mr. Jonathan Howland
- Mr. Chris Young
- 💉 Ms. Barbara Fletcher
- ✓ Mr. Chris Taylor
- 😹 Mr. Don Peters
- ∠ Dr. Al Bradley
- 💉 Mr. Bob McCabe

Principal Investigator Co- Principal Investigator Co- Principal Investigator Lighting and Imaging SPAWAR Light Fiber SPAWAR Project Manager Overall Electrical System Design Overall Mechanical System Design Propusion and Energy Storage Fabrication, Operations, Design.

AOPE/DSL Design Staff as required (approx. 15 eng & tech staff)

The End