## Deep Submergence Needs for Ocean Observatories



DESSC meeting - WHOI May 17-18, 2004

### Deep submergence needs for ocean observatories have been addressed in two recent reports:

- 2003 NRC Report "Enabling Ocean Research in the 21st Century - Implementation of a Network of Ocean Observatories" (Detrick et al.)
- 2003 UNOLS Working Group Report: "Ocean Observatories Facilities Needs from UNOLS" (Chave et al.)

- ⇒ Deep submergence assets will play a critical role in the installation, operation and maintenance of ocean observatories and associated science support operations
- ⇒ Both HOVs and AUVs will be able to perform important tasks at observatories, but ROVs are expected to be the "work-horses" of deep-sea observatories due to their:
  - extended dive duration
  - heavy-lift capability
  - high available power

## HOV



Role in ocean observatories:

- Conduct scientific investigations (mapping, sampling) around proposed observatory sites prior to installation
- Install experiments and sensors in areas of complex topography (e.g. in a hydrothermal vent field)
- Perform servicing of some observatory sensors and instruments after installation or carry out experiments requiring unique capabilities of HOV

# AUV

Role in ocean observatories:

- Used for high-resolution mapping for cable-route surveys
- Conduct high-resolution seafloor, geophysical or photographic mapping around an observatory node for scientific studies and to identify changes
- Conduct regular repeat surveys to determine variation in water column properties around a node
- Respond to transient events detected by monitoring observatory sensors



## ROV



Role in ocean observatories:

- Specialized ROV for burial and post-lay inspection of cables
- Installation and servicing of seafloor junction boxes, deployment of 'extension cables'
- Connection of moorings to seafloor junction boxes
- Servicing, repair or replacement of network equipment or instruments
- Deployment of long-term science experiments and general science support

# **ROV Requirements** (from Chave report, 2003)

- Deep ocean operation (to 6500m and beyond)
- Twin manipulators with at least one being a highly dexterous master/slave design
- Ability to accommodate on-board payloads of no less than 250 lbs water weight
- Adequate dynamic thrust to lift and move objects weighing up to 500 lbs in water
- Ability to lift of up to 2000 lbs to recover junction boxes and other equipment
- Ability to operate to Sea State 5, and preferably higher, for both NEPTUNE and the global buoy observatories
- Ability to carry diagnostic tools to troubleshoot nodes/associated equip. *in-situ*
- High precision real-time acoustic navigation
- Flexible power and data telemetry to accommodate a wide variety of sensors
- Ability to use a cable payout reel system for short (up to 10 km) near-bottom lays
- Fiber optic umbilical with dedicated spare fiber.
- Deployable from a variety of support vessels
- => Current generation of academic ROV, such as *Jason II*, are highly compatible with ocean observatory requirements

### Available Non-Commercial Deep Submergence Assets (from Chave, 2003)

| Vehicle    | Depth Limit (m) | Affiliation |  |
|------------|-----------------|-------------|--|
| Jason II   | 6500            | WHOI/NDSF   |  |
| ROPOS      | 5000            | Canada      |  |
| Tiburon    | 4500            | MBARI       |  |
| Ventana    | 1850            | MBARI       |  |
| ATV        | 6000            | SIO         |  |
| Isis       | 6500            | SOC         |  |
| German ROV | 4000            | MARUM       |  |
| Victor     | 6000            | IFREMER     |  |

 $\Rightarrow$  numerous commercial ROV systems available for applications up to 2500m depth; below 3000m the number of commercial systems decreases dramatically and only very small number operate in up to 6000m depth

### **Projected Observatory ROV Demand**

Est. O&M requirements: ~ 600 ROV days/yr

- ⇒ A single, deep-ocean ROV, Jason II, available through the NDSF will not be adequate to meet both observatory and general expeditionary science requirements
- ⇒ At least two additional deep-ocean ROV are needed by 2010 to meet the projected demand from ocean observatories and still satisfy other science needs
- *Note:* Projected observatory ROV operational requirements are strongly dependent on the number and location of nodes and the assumed service interval.

### **Issues for DESSC, UNOLS and ORION**

- What is the most cost-effective mix of academic and commercial ROV for ocean observatories O&M? What capabilities should be given the highest priority for UNOLS-operated vehicles?
- What role will non-US ROV play in O&M of ocean observatories (e.g. Canada, others)?
- Should academic-operated ROV (or AUV) dedicated to observatory work be managed through NDSF? If so, what are the implications for how the NDSF is structured and operated in the future?
- What design criteria will need to be established for observatory nodes and future vehicles to allow ROV (and HOV) operations around nodes with surface or sub-surface moorings?

#### Estimates of Observatory Ship/ROV Requirements

| Observatory<br>Type | Specifics         | Number<br>of Nodes | Ship type        | Ship-<br>months | Comments                  |
|---------------------|-------------------|--------------------|------------------|-----------------|---------------------------|
| Global              | Installation      | 1 node/10          | UNOLS            | 10 (one         | ROV not needed if         |
| Moorings            | Low-bandwidth     | sites              | Global class     | time)           | acoustically-linked       |
| Global              | Installation      | 1 node/5           | Industry charter | 10 (one         | ROV needed for            |
| Moorings            | High-bandwidth    | sites              | (1 leg)          | time)           | installation of junction  |
|                     |                   |                    | UNOLS (1 leg)    |                 | box/seafloor sensors      |
| Global              | Installation      | 1 node/at          | UNOLS            | 5 (one          | ROV needed for            |
| Cable Re-           | Minor move        | 5 sites            | Global class     | time)           | installation of junction  |
| use                 |                   |                    |                  |                 | box/seafloor sensors      |
| Global              | Maintenance       | 10                 | UNOLS            | 10/yr           | ROV required for          |
| Mooring or          | High-bandwidth/   |                    | Global class     |                 | servicing or installation |
| cabled              | Severe envir.     |                    |                  |                 | of seafloor sensors       |
| Global              | Maintenance       | 10                 | UNOLS            | 10/yr           | ROV not required for      |
| Moorings            | Mid-lat./Tropical |                    | Global or        |                 | acoustically-linked       |
|                     |                   |                    | Ocean class      |                 | moorings                  |
| Regional            | Installation      | -                  | Two Industry     | 5 (one          | Assumes 3700 km of        |
| cabled              | of backbone       |                    | Cable            | time)           | cable (12% buried)        |
|                     | cable loops       |                    | Laying           |                 |                           |
| Regional            | Installation of   | 30                 | UNOLS            | 8 (one          | ROV needed; probably      |
| cabled              | Nodes/Core        |                    | Global class     | time)           | would be done over 2      |
|                     | Sensors           |                    |                  |                 | field seasons             |
| Regional            | Maintenance       | -                  | Industry Cable   | 0.5/yr          | Stand-by maintenance      |
| cabled              | backbone cable    |                    | Laying           |                 | contract with industry    |
| Regional            | Maintenance       | 30                 | UNOLS            | 4-8/yr          | ROV needed; work          |
|                     | Nodes & Sensors   |                    | Global or        |                 | may be limited to May-    |
|                     |                   |                    | Ocean class      |                 | Sept in NE Pacific        |
| Coastal             | Installation      | 75                 | UNOLS            | 5 (one          | 2 Pioneer Arrays; ROV     |
| Moorings            |                   |                    | Regional         | time)           | not required              |
| Coastal             | Installation      | 1-2                | Cable            | 2 (one          | Assumes one cabled        |
| Cable               |                   |                    | Laying           | time)           | observatory               |
| Coastal             | Annual            | 75                 | UNOLS            | 5/yr            | 2 Pioneer Array; ROV      |
| Moorings            | Maintenance       |                    | Regional/Local   |                 | not required              |
| Coastal             | Annual            | <5                 | UNOLS            | 1/yr            | Divers or ROV in          |
| cable               | maintenance       |                    | Regional/Local   |                 | deeper water              |