

Common Hull Study Conclusions:

- Platform sizes were developed for a 6 different hull types to meet T-AGS and AGOR mission requirements
- There is minor commonality between T-AGS and AGORs, primarily in mission handling systems and hull mounted sensors
- Significant Differences In Capabilities Exist:
 - Speed Max, Sustained, and Survey
 - Number of Accommodations
 - Working Deck/Lab Areas (T-AGS is 2:1 over OCEAN)
 - Habitability Requirements (T-AGS Requires MSC)
 - Moon Pool (T-AGS)
 - Helicopter Landing Capability T-AGS(X)
 - Mission Electronics and Communications Systems

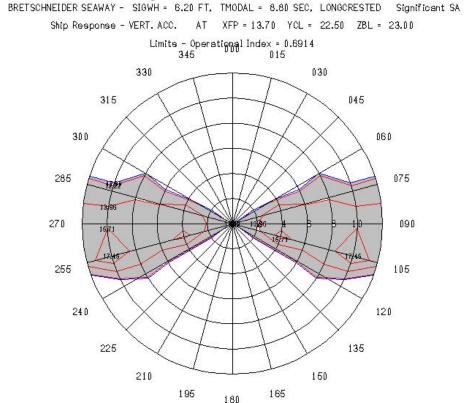
Common Hull

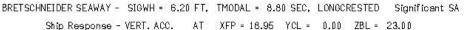
- Resulting platforms significantly different in size (T-AGS 50% longer and 150% larger displacement)
- Common platform would result in ships not optimized for particular operations
- A common hull would burden the OCEAN Class AGOR with a much larger and more expensive than necessary ship.
- If based on scalable hull, resulting platforms would be poorly optimized for their particular operating profiles and day rates would suffer
- Common hull not feasible

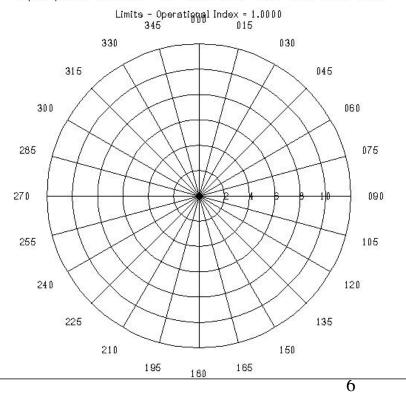
Cost Estimate Summary

- OCEAN Class Program Cost Estimated to Be (Lead Ship):
 - » \$63M to \$67M for Monohull
 - » \$70M to \$80M for SWATH
- REGIONAL Class Program Cost Estimated to Be (Lead Ship):
 - » \$28M to \$30M for Monohull
 - $\, \ast \,$ \$33M to \$37M for SWATH

- Existing T-AGS 51 falls significantly short of meeting OCEAN Class SMRs
 - Ship designed as a coastal survey ship
 - No dynamic positioning capability
 - Single screw, geared diesel, no bow thruster
 - Accommodations for only 18 scientists (vice 25 required)
 - Day rate expected to be slightly higher (3-4%) than new OCEAN Class
 - Chine hull form designed for slower speed
 - Working deck area 300 ft² vice 1,500 required
 - Working deck not designed to ruggedness or load requirement of AGOR working deck; no bolt grid
 - No space for vans
 - Lab area 700 ft² vice 2,000 required
 - Handling Systems
 - No suitable over-side or over-stern handling equipment presently installed
 - Need to install aft A frame and side hydroboom (including underdeck strengthening)
 - No suitable winches currently installed

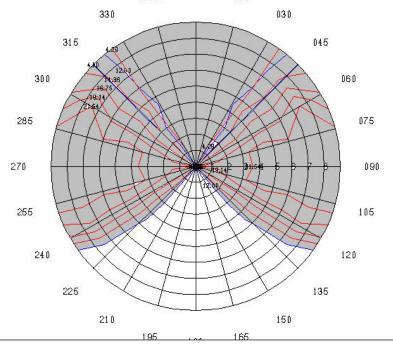

- Extensive modification of T-AGS 51 would required to meet even the basic SMRs (DPS, Science Accommodations, Day Rate)
 - New stern aft of midship with new propulsion plant
 - New 20 Foot long hull section
 - Bow thruster
 - Expansion of accommodations, storage
- Not economically feasible to turn a T-AGS 51 into an OCEAN Class
- Any economically feasible conversion would result in sharply reduced capabilities vs. OCEAN Class SMRs
- Expected life of converted ship ~ 20 years vice 30 years for new ship
- Converted Ship Meets Stability Requirements

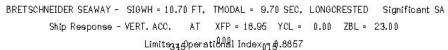

T-AGS 51 Seakeeping Performance Most Probable Modal Period, N. Atlantic & Pacific, SS4

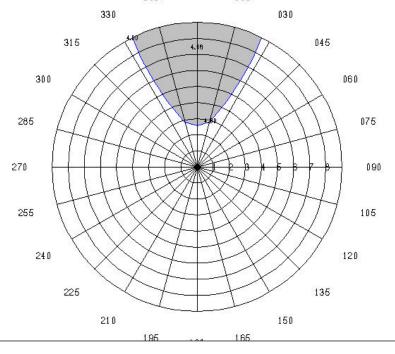

Longcrested Seas - Shaded Areas Exceed Motion Limits

T-AGS 51 Existing

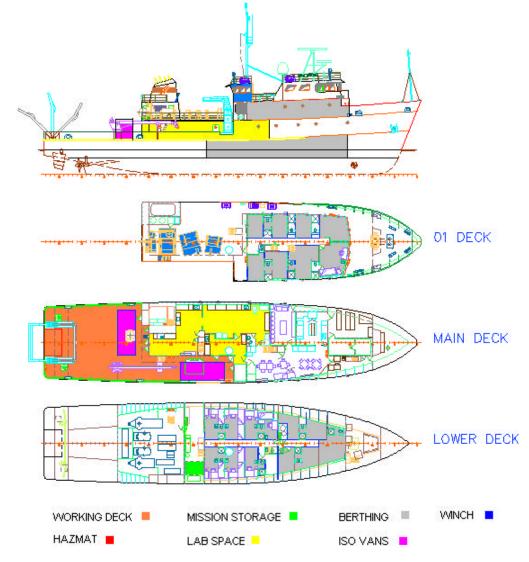
T-AGS 51 Lengthened with plug

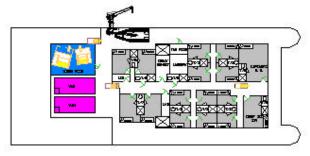


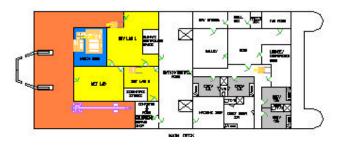

T-AGS 51 Seakeeping Performance Most Probable Modal Period, N. Atlantic & Pacific, SS5 Longcrested Seas - Shaded Areas Exceed Motion Limits


T-AGS 51 Existing

BRETSCHNEIDER SEAWAY - SIGWH = 10.70 FT, TMODAL = 9.70 SEC, LONGCRESTED Significant SA Ship Response - VERT. ACC. AT XFP = 13.70 YCL = 22.50 ZBL = 23.00 Limits34@perational Index01.0.2171


T-AGS 51 Lengthened with plug





01. XXX

10

- Acquisition Strategy Analysis:
 - Develop a selection of acquisition strategies that could be used for procurement of the REGIONAL Class AGOR.
 - Identify approaches that have the potential for reducing cost and/or accelerating schedule.
- Refine the REGIONAL Class Concept Designs Within the \$25M Cost Cap
 - Refine the ROM design to be affordable within the \$25M cost cap.
 - Provide recommendations on most suitable hull type (monohull or SWATH)
 - Identify requirements that drive cost and alternatives to reduce cost

Common Hull

- Effects of Tonnage on Regulatory Requirements and Life Cycle Cost
 - Analyze regulatory body requirements of domestic and international tonnage relative to ship size
- Technologies to Optimize Reliability, Manning, and Life Cycle Cost
 - Identify and investigate technologies to improve reliability, reduce manning, and reduce life cycle cost
- Ship Specification and Other Documentation to Support Acquisition
 - Develop documentation suitable for supporting initiation of the acquisition process