UNOLS SHIP SCHEDULING COMMITTEE

Report of Meeting
9 September 1996
National Science Foundation
4201 Wilson Boulevard, Room 1235
Arlington, VA 22230

SHIP SCHEDULING REVIEW

Report of Meeting
10 September 1996
National Science Foundation
4201 Wilson Boulevard, Room 730
Arlington, VA 22230

UNOLS SHIP SCHEDULING MEETING
 National Science Foundation
 4201 Wilson Boulevard, Board Room 1235
 Arlington, VA 22230

9 September 1996

Appendices

I. Ship Scheduling Meeting Agenda
II. Ship Scheduling Meeting Attendance List
III. Ship Use and Cost Summary 1996 \& 1997
IV. Inventory of 1997 Ship Time Requests
V. Inventory of 1998 Ship Time Requests
VI. 1997 Cruise Tracks
VII. NAVO View-graphs

INTRODUCTION:

This report is a summary of the discussions at the UNOLS Ship Scheduling Meeting held at the National Science Foundation in Arlington, Virginia on 9 September 1996. The Ship Scheduling Committee met to present schedules and deliberate on the funding implications for 1997. In addition to the schedulers from the UNOLS operator institutions, agency representatives and program managers from NSF, ONR, NAVO and NOAA attended. The meeting agenda was followed except as indicated herein. A copy of the agenda is included as Appendix I. A list of the attendees is appended as Appendix II.

Schedulers provided the UNOLS Office with the latest 1997 proposed schedules. These schedules were posted on OCEANIC. Schedulers also provided the UNOLS Office their best estimates of the costs to support these schedules. A summary of these costs is included as Appendix III. In advance of the meeting the UNOLS Office distributed an inventory list of the 1997 and 1998 ship time requests (NSF Form 831) held by that office. Copies of these inventories are included as Appendix IV \& \mathbf{V} respectively. Copies of the provided 1997 ships' cruise tracks are included as Appendix VI.

The meeting was called to order at 0830 hrs. by the Chair, Don Moller. Introductions were made around the room.

FEDERAL AGENCY REPORTS

National Science Foundation - Dolly Dieter provided a brief statement suggesting that the schedules published reflected many inefficiencies which would need a careful look during this meeting.

Office of Naval Research - Sujata Millick reported that she had obligated all of the ONR money available for 1997 and that additional ship days would not be likely.

Naval Research Laboratory - Norm Cherkis echoed Sujata's comments that the NRL money for 1997 has been totally obligated.

National Oceanographic and Atmospheric Administration - Scott McKellar reported that NOAA's OAR is planning to obligate approximately \$3M for 1997 UNOLS ship operations. In the out years this support is expected to be approximately $\$ 2.6 \mathrm{M}$.

Naval Oceanographic Office - Pat Dennis reported that Congress is likely to pass the National Oceanographic Partnership Act (NOPA). This should help UNOLS with \$7.5M "new" money for 1997. Although this is only one year funding, all concerned would like to see it continuing. Pat then introduced CDR Jim Trees and Gordon Wilkes of NAVO. Jim provided a series of view-graphs, Appendix VII, which outlined how NAVO planned to utilize the $\$ 7.5 \mathrm{M}$. He explained that military surveys had access to foreign country's EEZ and that the NAVO fleet is fully committed on this work. They have generated a backlog of survey and oceanographic requirements in both the U. S. EEZ and in international waters. Here is where UNOLS can assist. Jim stressed the need for close coordination for the projects planned on UNOLS ships in 1997.

The remainder of the meeting was devoted to the proposed schedules for 1997. Below are brief comments of each ship's proposed schedule. The order listed below represents the order presented.

ALPHA HELIX - University of Alaska - Tom Smith presented a 1997 schedule of 161 days for ALPHA HELIX with 53 of these days presently funded. Tom suggested that the funding decisions for the OPP work would not be expected at this time. All Russian clearance requests were turned down for 1996 work. Tom expressed concern that NOAA chose WECOMA for the 60 days of FOCI work in the Gulf of Alaska.

MOANA WAVE - University of Hawaii - Stan Winslow reported that MOANA WAVE has scheduled 48 HOTS days for 1997. A total of 180 days was presented. The schedule would permit doing the six days of Stevens if available. Stan indicated that one HOTS cruise in September of October should be done by another UNOLS vessel, probably REVELLE.

CLIFFORD BARNES - University of Washington - A schedule of 134 days of funded work was reported by Robert Hinton for BARNES. This is a good schedule for that ship.

WECOMA - Oregon State University - Fred Jones presented a schedule of 193 days for WECOMA in 1997. This includes the NOAA FOCI work in the Gulf of Alaska. The schedule could not accommodate the cruise of Nittrouer which will go to THOMPSON.

POINT SUR - Moss Landing Marine Laboratory - Mike Prince provided a schedule of 203 days with 153 of these days presently funded. NPS will be providing $\$ 100 \mathrm{~K}$ for ship use in 1997. The Bellingham work could not be accommodated.

ROBERT G. SPROUL - Scripps - The SPROUL schedule was presented by Rose Dufour. The schedule reflected 140 days which included work with BARNES on the Simenstad cruises. Weather days have been included in the schedule.

NEW HORIZON - Scripps- Rose also presented the schedule for NEW HORIZON. The 216 day schedule includes 63 days of NAVO work.

PELICAN - LUMCON - The PELICAN schedule was presented by Steve Rabalais and includes an optimistic 271 days. At this point 100 days have been funded. The NAVO work has been triple booked with GYRE and LONGHORN. A total of 76 days has been scheduled for servicing buoys for the National Data Buoy Center. This work is likely to be reduced significantly.

LONGHORN - University of Texas - The schedule for LONGHORN reflected 96 days of which 68 were funded. As indicated above the NAVO work has been triple booked. The funding for the Whitledge work continues to be pending.

GYRE - Texas A\&M - Dave Powell represented the GYRE schedule. The scheduled work for Dunlap/Bryant needs to be resolved.

CALANUS - University of Miami - Dave also presented the schedule for CALANUS. A total of 102 days has been scheduled of which 66 are funded.

SEWARD JOHNSON - Harbor Branch Oceanographic Institution - Tim Askew provided the Johnson's schedule which includes 154 days of NSF time and 67 days of other totally 221 . Tim was advised that the transit time needed to be coordinated between NSF and NOAA.

EDWIN LINK - Harbor Branch Oceanographic Institution - Link's schedule included a major cruise to New Zealand which is still problematical. Tim reported that the Martin work could drop out.

SEA DIVER - Harbor Branch Oceanographic Institution - Tim presented a modest schedule for SEA DIVER which included double booked work of NAVO.

CAPE HATTERAS - Duke/UNC - Joe Ustach provided the schedule for CAPE HATTERAS. The ship will be operating out of both WHOI and Norfolk. The Buesseler work has been funded, however, the number of days need to be checked. The Collins work has been funded which includes transit that is to be split between NSF and ONR. The NAVO work is double booked with SEA DIVER.

CAPE HENLOPEN - University of Delaware - CAPE HENLOPEN's proposed schedule was provided by Tim Pfeiffer. A schedule of 170 days was presented which included NAVO work.

WEATHERBIRD II - Bermuda Biological Station - Lee Black provided the schedule of WEATHERBIRD II which included 134 days. Lee reported that the Hydro station program has been lost as well as the work of Dueser. The ship picked up an NRL cruise for Weideman.

ENDEAVOR - University of Rhode Island - Bill Hahn provided the schedule for ENDEAVOR. This schedule was closely linked with OCEANUS including GLOBEC, Coastal Mixing and Optics and PRIMER work. A total of 187 days were scheduled.

OCEANUS - Woods Hole Oceanographic Institution. - The OCEANUS schedule was presented by Don Moller. Don discussed the coordination with ENDEAVOR and explained that equipment needed to be shared. Some date changes are likely. A total of 202 days has been scheduled.

LAURENTIAN - University of Michigan - Linda Goad provide LAURENTIAN's schedule which included a modest 77 days. Linda was informed that the Jude cruise funding remains pending.

BLUE FIN - Skidaway - No schedule was provided for BLUE FIN
URRACA - Smithsonian Tropical Research Institute - No schedule was provided for URRACA.

LARGE SHIP SCHEDULES - Don Moller reviewed the large ship requirements for 1997 listing all of the cruises that were time constrained. These constraints caused significant difficulty in scheduling.

KNORR - Woods Hole Oceanographic Institution - KNORR will be operating in the North Atlantic for 1997 which includes a major WOCE cruise. The Talley cruise should include two days for Rossby. The Catapovic ship time funding remains pending.

ATLANTIS - Woods Hole Oceanographic Institution - ATLANTIS is expected to be delivered 24 February 1997. It will undergo outfitting and ready for operation on 2 June. A total of 206 operating days are scheduled which include 198 funded days. There are 88 ALVIN dives planned and 32 days with AMS 120. The schedule starts in the Atlantic and moves to the Pacific with work off San Diego then south to the northern and southern EPR. A Post Shakedown Availability (PSA) is required before the end of April 1998.

THOMPSON - University of Washington - Robert Hinton provided the schedule for THOMPSON. The ship will sail in early January 1997 for the western Pacific for the Fryer and Derbyshire work then returning to Seattle in May. The NOAA work originally scheduled will go to BROWN. A schedule of 290 days is expected.

REVELLE - Scripps - The schedule of REVELLE was presented by Rose Dufour. The recent addition of Urabe and Lutz cruises permits an efficient way to work to Valparaiso for the Lonsdale cruise. This positioned REVELLE for Mix then north for the NOAA Weller work. Timing for the Weller cruise will need coordination.

MELVILLE - Scripps - MELVILLE departed 8 September for work in the south eastern Pacific then proceeding around the world from west to east. The ship will pick up the moorings of Nowlin and then Luther. After returning to the U. S. MELVILLE will be available for the NAVO work in the Gulf of Alaska.

MAURICE EWING - Lamont Doherty Earth Observatory - EWING's schedule was provided by Mike Rawson. The ship is planning a maintenance period in the Gulf Coast completing the end of March 1997. EWING can then be available for the NAVO work. After Atlantic cruises the ship will transit the Panama Canal completing the year in the Pacific.

Questions came up during the meeting as to the scheduling process. Scheduling was particularly dynamic during the summer with many cruises changing ships several times. Scientists expressed to their program managers their dissatisfaction with the process. The year was particular active due to the late additions of some cruises and the late funding decisions of others. The Ship's Scheduling Committee adjourned while a smaller group deliberated the ramifications of these changes and to further wrestle with the scheduling process as it exists.

Ship Scheduling Review
National Science Foundation, Room 730
4201 Wilson Boulevard
Arlington, VA

September 10, 1996
The Ship Scheduling Review Group met at 080010 September to review the deliberations of the UNOLS Ship Scheduling Committee meeting of 9 September. Present were Don Moller, SSC Chair; Robert Hinton, SSC Vice Chair; Dolly Dieter, NSF; Steve Piotrowicz and Beth White, NOAA; Ken Johnson, UNOLS Chair; and Jack Bash, UNOLS.

Below are comments resulting from the meeting. They are presented in the order addressed during the 9 September Scheduling meeting. Most issues had been resolved prior to the meeting with the exception of the NAVOCEANO work and the schedules of MELVILLE, REVELLE and EWING. The NAVOCEANO work will be discussed in the ship write ups then summarized at the end.

ALPHA HELIX - The 161 day schedule appears fine as presented. It is understood that funding decisions from OPP will come later with changes likely. NOAA has cruises scheduled for WECOMA that could possibly be accommodated by ALPHA HELIX. A justification of ship selection by NOAA is anticipated.

MOANA WAVE - Additional days must be added to the schedule to accommodate the Phipps-Morgan deployment cruise. The Duennebier work is funded by NSF facilities not the instrumentation section of NSF.

CLIFFORD BARNES - A good schedule of 134 days was presented for BARNES.
WECOMA - A justification of the NOAA FOCI work aboard WECOMA is anticipated.

POINT SUR - POINT SUR has scheduled the February portion of the NAVO work. The Review Group believes that science would be best served by having both portions of the cruise (Feb and Aug) on the same ship. This would only work if NEW HORIZON could take POINT SUR cruises freeing that ship to complete both portions of the work. This needs to be investigated and the cost implication evaluated. If greater costs are incurred by NSF this exchange will not be acceptable. If the swap is not feasible then two different platforms will be the only way to accomplish both portions of this project.

ROBERT SPROUL - A possibility of four weather days could be included on the Simenstad cruise not eight. Weather days should only be used if needed and not converted into science days.

NEW HORIZON - See comments above concerning the coordination of the NAVO work with POINT SUR.

PELICAN - An ambitious and optimistic 271 days has been scheduled. It is likely that the National Data Buoy Center Program work will be significantly reduced. The NAVO work is triple booked on PELICAN, GYRE and LONGHORN. The Review Group believes that both PELICAN and GYRE are capable of doing the work and the decision may come down to cost. It is recommended that NAVO perform a ship check and assess which of these two ships is preferred for their work taking into account the differences in day rate. It is understood that if PELICAN is selected LUMCON will work with U Texas to organize the technician support.

LONGHORN - The Whitledge cruise remains pending. The Review Group believes that both PELICAN and GYRE are better suited for the NAVO work - see comments above.

GYRE - Funding for the Dunlap/Bryant work needs to be resolved. See comments above with respect to the NAVO work. The Rowe-REU work remains pending.

COLUMBUS ISELIN - No schedule.
CALANUS - No comment.
SEWARD JOHNSON - The coordination between Molinari, Leaman and Richardson is necessary to resolve the South Atlantic work. More consolidation is necessary. Transit costs between NSF and NOAA will need to be shared.

EDWIN LINK - The June Molinari work should be 10 not 22 days.
SEA DIVER - The LaPointe work has been declined. For the integrity of the science it is the view of the Review Group that both legs of the NAVO work should remain on one ship. Because CAPE HATTERAS is able to schedule both legs and is a more capable ship to do the work the NAVO project should go to that ship.

BLUE FIN - No schedule presented.
CAPE HATTERAS - The Ledwell work should be listed as ONR not NSF. A sharing of the transit costs between NSF and ONR should be worked out. Check the timing of the Collins work to ensure it fits with Collins on EWING. The Gettrust work is still pending. Note the comments above (SEA DIVER) concerning the NAVO work.

CAPE HENLOPEN - Good schedule - no comment.

WEATHERBIRD II - A light schedule, no comment
ENDEAVOR - The multiple ship work with Morrison could create a timing problem for the cruise. ENDEAVOR and OCEANUS have well integrated schedules to accommodate the GLOBEC (NSF) CM\&O (ONR) and PRIMER (ONR) work.

OCEANUS - A tight schedule with mostly GLOBEC work through August.
LAURENTIAN - The Jude cruises have been declined which leaves LAURENTIAN with a very light schedule. Coordination with NOAA's HALCYON for future operations should be considered.

URRACA - No schedule available.
Large Ships - The schedules of the large ships are driven by several programs which have serious constraints.

KNORR - The ship will remain in the Atlantic for the year. Investigate adding two days to the Talley transit to accommodate Rossby. Silva should be considered for 1998.

ATLANTIS - The Schedule presented may be significantly modified if the ship can do its' PSA early which frees up an open end for the southern EPR programs. DESSC should consider when is the best time to marry the ROV system to ATLANTIS. This will have an impact on future work. The ATLANTIS schedule is unable to accommodate the funded Karson and Wirsen/Taylor work in the Pacific.

THOMPSON - The NOAA O'Clock work will go aboard BROWN. The port time in the NAVO program was removed reducing the charged time from 18 to 14 days. A healthy 291 day schedule remains. (see note in REVELLE comments re HOTS)

REVELLE - A Urabe/Lutz cruise has been added to bridge the transit to the South Pacific for the Lonsdale cruise. REVELLE will do the Mix work then Weller. A resolution is necessary concerning the loading port for the Weller cruise. Is Callao acceptable? REVELLE will do the Tanner Banks SeaBeam survey for NAVO. Stephens has been moved to September. REVELLE or THOMPSON (depending on the month available) could be available for a HOTS cruise.

MELVILLE - After MacDonald/Haymon MELVILLE will proceed to Cape Town sailing west to east. The Nowlin moorings will be picked up first followed by Luther's moorings. The ship could complete Christie's work if funds are available (very tentative). After Chave in the mid-Pacific and an overhaul in San Diego MELVILLE is avaulable for the NAVO gravity work in the Gulf of Alaska. Ninety days have been
scheduled, however, this could be extended if needed. The ship completes the year with Langmuir at $9^{\circ} \mathrm{N}$.

EWING - After an extended maintenance period EWING will be available for the NAVO work New York to Jacksonville. EWING must resolve the deck space and power requirements of NAVO. The Kent/Barton funding needs to be resolved. EWING will be available in September for the NAVO Seamap C/Remus work. The September start time must be acceptable to NAVO.

The following is a summary of the 11 NAVOCEANO projects:

Priority \#1- Atlantic - Continental Margin Slope Stability Study.
EWING - April-May - Must check deck space and power requirements.

Priority \#2 - ODISTA 23 Survey.
THOMPSON - 31 July - 13 August
Priority \#3 - Seamap C/REMUS survey of Onslow Bay. EWING - 3-27 Sept - Must check date acceptability.

Priority \#4 - Southern California Offshore Range Survey.
REVELLE - 26 May-2 Jun - SeaBeam Survey
NEW HORIZON - 6 Jun-20 Jun - Side scan - Sampling

Priority \#5 - NE Pacific Gravity Surveys.
MELVILLE - 22 Jun-19 Sept - Gravity.
(Could expand this work.)
Priority \#6 - Cape Lookout to Mayport.
CAPE HATTERAS - 17 Feb-23 Mar, 25 Aug-28 Sep.
Priority \#7-Galveston, TX to Corpus Christi - NAVO ship check requested.
Option \#1 - PELICAN - 10-22 Feb, 1-13 Aug.
Option \#2 - GYRE - 1-13 Feb, 1-13 Aug.

Priority \#8 - San Diego to Port Hveneme.
NEW HORIZON- 25 Feb-14 Mar, 28 Aug-14 Sep.
Priority \#9 - Virginia Beach to Long Beach, NY.
CAPE HENLOPEN - 12 Feb-4 Mar, 21 Aug-10 Sep.
Priority \#10-San Francisco to Monterey, CA.
POINT SUR - 11-21 Feb.
NEW HORIZON - 15-16 Aug.

Priority \#11 - Straits of Juan de Fuca to Columbia River. WECOMA - Feb.
THOMPSON - Aug.
Neither has been scheduled, however, the schedules of the respective ships can accommodate the science.

APPENDIX I

AGENDA

UNOLS SHIP SCHEDULING COMMITTEE MEETING

MEETING: UNOLS Ship Scheduling Committee Meeting
DATE: 9 September 1996
PLACE: \quad National Science Foundation, Room 1235
4201 Wilson Boulevard
Arlington, VA
TIME: $\quad 0830 \mathrm{Hrs}$.

The Ship Scheduling Committee meeting will be called into session by Don Moller, Chair.
AGENCY PRESENTATIONS. Representatives from NSF, ONR and NOAA will provide scheduling guidance, science program ship requirements and priorities, science funding decisions, ship operation funding outlook and related matters for the 1997 scheduling year.

NAVAL OCEANOGRAPHIC OFFICE. Representatives from NAVOCEANO will give a briefing on the operational requirements of the Navy programs recently presented for scheduling on board UNOLS vessels during 1997.

REVIEW AND UPDATE SCHEDULES. Each scheduler will present and update their respective ship(s) schedule and cost information. View graph(s) for this presentation are recommended.

IDENTIFY CONFLICTS AND UNSOLVED ISSUES. There will be a discussion of cruises with scientific and operational conflicts, double booked cruises, and unscheduled programs. (Note: We will attempt to account for all cruises on the inventory list distributed by the UNOLS Office.)

COSTS. The UNOLS Office will provide a summary of projected cost figures for vessel operations in CY-'97.
ELECTIONS. The terms of both the Chair and co-Chair of the Ship Scheduling Committee of UNOLS expire at the end of 1996. Nominations for the positions will be solicited from the floor. These are two year terms ending in 1998. A vote will follow closing of nominations.

GENERAL DISCUSSION. There are significant changes occurring in the environment in which the UNOLS Fleet operates. Projected funding reductions, expansion of the partnerships with NOAA and NAVOCEANO, an increase in the number of PIs from non-UNOLS academia, an increase in the number of large multi-ship, multiyear programs and changes in the very nature of the science programs themselves all directly affect the way the Fleet is utilized and scheduled. There will be a discussion of the effect that these and other changes are having on the UNOLS ship scheduling process. Discussion of procedural changes, if any, necessary to improve responsiveness to the scientist user and to attain cost effective efficient utilization of the Fleet.

PRE-MEETING ACTION. All ship's schedules should be posted on the OCEANIC bulletin board. Cost figures in the following format for both 1996 and 1997 should be passed to the UNOLS Office no later than 4 September 1996.

1996	NSF	NAVY	OTHER	TOTAL	DAY RATE
SHIP DAYS					
COST SK					
1997	NSF	NAVY	OTHER	TOTAL	DAYRATE
SHIP DAYS					
COST \$K					

WHAT TO BRING TO THE MEETING:

1. View graph(s) to illustrate your 1997 schedule.
2. View graph(s) of the cruise track for 1997. (A hard copy for the record is requested.)
3. An extra copy of UNOLS Ship Time Request forms not on file at the UNOLS Office.

APPENDIX II
Ship Scheduling Meeting Participants - 9/9/96
Institution/Organization HBOI
NSF/OCE
BBSR
Texas A\&M
Naval Research Lab
UNOLS
NSF/ODP
Navy Staff Support (JOI)
NSF
Naval Meteorology and O
Naval Meteorology and Oceanography Command SIO/UCSD (703) 306-1586/depp@nsf.gov
(401) 874-6554/(401) 874-6574/b_hahn@gsosun I .gso.uri.edu (206) 543-5062/(206) 543-6073/hinton@ocean.washington.edu (703) 306-1583/eilsweir@nsf.gov
(408) 755-8657/(408) 753-2826/johnson@mlml.calstate.edu
(541) 867-0224/(541) 867-0294/jonesf@ucs.orst.edu
(703) 306-1581/bmalfait@nsf.gov
(301) 713-3435 x135/smckellar@rdc.noaa.gov
(703) 696-4530/(703) 696-2007/millics@onrhq.onr.navy.mil
(508) 289-2277/(508) 457-2185/dmoller@whoi.edu
(302) 645-4341/(302) 645-4006/pfeiffer@udel.edu
(301) 713-2465 x124/(301) 713-0163/spiotrowicz@oar.noaa.gov
(305) 361-4832/(305) 361-4174/dpowell@rsmas.miami.edu
(408) 633-3534/(408) 633-4580/prince@mlml.calstate.edu
(703) 306-1580/mpurdy@nsf.gov
(504) 851-2808/(504) 851-2874/srabalais@coco.lumcon.edu
(914) 365-8367/(914) 359-6817/rawson@ldeo.columbia.edu

Name

 Patrick Dennis
Dolly Dieter
Lcdr. Mike Dotson Rose Dufour David Epp Bill Hahn Robert Hinton Eric Ilsweire Ken Johnson Fred Jones Bruce Malfait Scott McKellar Sujata Millick Don Moller Tim Pfeiffer
Steve Piotrowicz Dave Powell Mike Prince Mike Purdy Steve Rabalais
Mike Rawson
(409) 862-3290/(409) 845-6331/eshaar@)ocean.tamu.edu
(703) 306-1585/(703) 306-0390/ashor@nsf.gov
(907) 224-5261/(907) 224-3392/fnts.aurora.alaska.gov
(601) $688-4370 /(601)$ 688-5514/jtrees@
(919) 504-7579/joeu@)duncoc.ml.duke.edu
(703) 306-1579/(703) 306-0390/rwest@nsf.gov
(301) 713-2465 x184/(301) 713-0163/ewhite@oar.noaa.gov
(601) 688-4376/(601) 688-5602
(808) 847-2661/(808) 848-5451/snug@poha.soest.hawaii.edu (703) 306-1587/myoungbl@nsf.gov

Ed Shaar
Alexander Shor
Tom Smith
Jim Trees
Joe Ustach
Richard West
Beth White
Gordon Wilkes
Stan Winslow
Marsh Youngbluth

APPENDIX III

APPENDIX IV

1

				20mun		
			SHIP	1797	source;	
P!	thstrfurton	4EA	2equeste?	3ATS	Sundis:	S4rs
Arreram, :	[4*)	Sis		?	(3)	\because
Badiey, \%	U)St	Nac	CAPE 4E4CDPEN	4.6/5Ep	3x:	ic
Batiey. ;	480:	449	SEVARI JOHMSON	NAY	WSF/310	:?
Bance. r	U	499	BARMES	SEP	NSF/3i9	20
Banse. ${ }^{\text {r }}$	U	YP9	heplun	FAlt	4SF/859	,
Barth. J	058	H 6_{6}	ENOEAYOR	Alls	OMR	\because
Barton. ${ }^{\text {P }}$	4 Candetage	HP13	EHING	JSM-HAY		:
Bearcsley. R	WHOT	NA6	EMEEAVCR	[E]	ONR	22
Beardsier, z	Un93	[M5	helville/rey	JuW/JuL	WSF/PHT	01
Becker. ${ }^{\text {r }}$	MiAM!	yp?	thonpsgh	Jumher	WSF/gbp	?
Belligatas. J	MIt	He4	MMERR/LARGE	SEP/OCT	万MM	10
Blair. N	WC Stars	446	LIMI 7 SEl J	Jut!	WSF/CHEX	16
Block. 8	Stamfors	NP?	POINT SUR/SPR	SEP/OCT	NSF/PHYS	14
Blowat. H	U Mo	NA6	CAPE HEMLPPEM	APR \& Jut	OMn	10
3ock. E	8H01	HA6	OCEAMUS	MAY	4SE/COOP	$2!$
Bonatti. E	LJEO	*al0	ATLANTS/ALHIN	AMY	WSF/466	30.
Bond. if	S.DEO	MA1/2	EvING	Jut/aug	NSF/	30
Boucot. 4	054	44.4	EHING/LARGE	Jul/ajg	WSF/MEG	17
Bornton. Y	(1) 10	NA6	CAPE HEW PPEN	isapreply	WS:'AXER	45
Brown. 1	SERIPPS	4P! ${ }^{\text {a }}$	MEDIEM	ANI	*SF/Mg6	:
Brown. 1	UWH	Nat	ENAEAVOR/ACE	JAW/FEB/SEP	NSF/PMY	15
Bruland. I	ycsc	ke9	POIMT SUR	JUW/JUL	WSF/CHE!	21
Buesseler. 1	WHeI	M ${ }^{6} 6$	CAPE HATTERAS	MAR-aug	WSF/CHEN	24
Buskey. E	UT	H49	LOMGHORK	JAK/APR/JIL	$37 ?$	
Bution, 1	ALASIA	WP6	ALPHA HELIX	JUM	NSF/8IO	3
Calder. 1	RYL OMTARIO	HA6	amancis/alvin	AMY	camada	,
Cande. S	SCRIPPS	AN2/3	palmer	FEB/HAR	WSF/OPP	52
Carbotte. 5	LDEO	Sp3	ETIUN	Jam/Kar	MSF/M66	37
Carbotte. S	LOEP	WP13	Ailamils	OCT-dEC	WSF/MG6	36
Cary. g	UBEL	SP3	ATLAMTIS	W0V	WSF/8io	4
Cary. s	UDEL	IP9	arlantis	404	WSF/8IO	4
Catapovic/guen	WHeI	44	OCEames/EW	SEP	OMR	28
Cary. S.C.	UHEL	WP13	atlantls/alvin	NOY	WSF/BIO	4
Chadrick. V	058	we9	thenpsok	Summer/Fall	NSF/RIDGE	5
Chave. A	WH0I	We9	(MERR/JASOM	SEP	WSF/ARI	22
Chave, A	WHOI	$5 P_{5} / 6 \mathrm{~A}$	LaRGE	4 PQ	WSF/RIDGE	39
Chave. A	VH0I	$4 \mathrm{LP9}$	ATLAMIS II	jum/Jut	WSF/8SIDP	
Chave. A	UHEI	WP9	arlamils If	OCT/WOV	WSF/OSIDP	6
Chishole. S	HIT	M ${ }^{6} 6$	OCEAMS/MEI	Jaki	NSF/BIO	14
Christnesea. J	BIGELOV	Na6	Cape hatieras	Julioct	WSF/CHEN	18
Clark. P	ose	NP2	Large	3ü/fall	WSF/ATM	28
Cochran. J	LeE	HPI ${ }^{\text {a }}$	EUING	AMY	MSF/RIDGE	36
Cochran. J 8	Leso	[47/[MII	EVING	DEC	WSF/RIMGU	43
Cochran. 1	Stow brear	WP12	hoama yave	howthey	MSF/CHEN	1
Coffin. 1	UT	1710/11	ESIUM	APR-HaY	NSF/0BP	41
Coffin. 1	UT	546	HELVILLE/LAR	JGM-SAR	WSF/MGG	56
Coffin, ${ }^{\text {a }}$	UT	MP10/11	Eving	apr/mat	WSF/日BP	41
Collins. ¢	HPS	WP13	point sur	sat	WSF/PHY	16
Collins. J	VHOI	HA10	EUING	sperimg	WSF/8BP	36

Hayuard. if	5cR12Ps	4P8/N: ${ }^{\text {a }}$	THOMPSON	$\times 40$ \& 4.6	455/310	28
Herbers. :	स5	4nio	- Cape harichis	IUC \& DEC	102	15
Hebert. :	URI	4AE	ENDEAMOR	$x \rightarrow 1$	OHP	4
Hoseg. N	WHOI	NA6	oceanus	AUG/ JEP	ONR	14
Holt, R	HOAA/KAFS	AN9	large	IAN-MAR	NOAA	70
Honjo. S	* H !	524/7/AH6	Large	4 PO	W5F/8:0	30
Houde. E	840	NA6	CAPE HENLOPEN	SaN/ iti	*SF/810	15
Houstiton. ?	(3E)	NAG	Endeaugr	$\mathrm{x} 4{ }^{1}$	W5\%/	:
Hunt. 6	UC:	HPS	hLPHA HEL:	AUG-SEP	NSF:OPP	31
Huyer/vij	OSV	489	Vecoma	Jut 3 MOV	ONP	,
[noras. Carey	Have	446	Large	淮	*av9	50
Jacobs. 1	SCRIPPS	SAI	neviuk	Mer	NSF	
Jahake. R	sxidanay	4 4 6/10	Large	KAP	VGF/CHEX	
Jenkins.	8H0:	4 P 12	THOMPSOK	13A	WSF/CHEX	37
Johns.	RSMAS	[Wl	LARGE/REDIUK	FEB \& SEP	ONR	29
Johnson. P	UY	ypo	MNORR/ALTIN	1AE 77		ji
Johnson. P	U	NP9	BARMES	Spring	WSF/OCHTEC	2
Johason, P	3	HP9	REVELLE	SUMEER	NSF/OCNTEC	?
Johnson, P	U4	NAIO/SAI	arlantis/alvin	ANY	WSF/M66	26
Johnson. P	U4	NP6.9	THOKPSON	SUMHER	WSF/MgG	3
Johnson. P	31	He9	THOMPSgh/JASOK	SHMEE?	NSF/RGS	?
Johnson, ?	U	HAIO/SA1	ATLANTIS/alvis	LATE ${ }^{7}$	WSF / M 96	23
Josent. Per	Nave	M $\mathrm{Mab}^{\text {b }}$	MEDIUA - Large	Nor	Nevo	27
jove. S	Taku	WAP	GraE	JAN 5 相	WSF/CHEX	18
Jorce. !	H01	NP:3	neprux	sils	NSF/Mob	14
Jorce, i	1 HOL	Hab/9	gnorr/ailantis	AAY/JJM	NSF/ACCE	47
Jude. 1	3 SCH	GL4	LaURENTIAN	APR/RAY	NSF/EPA	20
Jusars. p	U4	HP6	barves	T8A	NSF/8io	16
Karl. 0	havall	WP12/9	MOAKA WAUE	JAK/FEB/MAR	NSF/CHEK	84
Karlin. R	(3) MEyapa	HP9	BARMES	jerine/sur	NSF/XGG	14
Karsten, J	HAvall	SP\%	Me:rille	DEC96/FE897	WSF/466	32
Karsten. J	havall	MP9	aflantis/alvin	JUN-SEP	WSF/W66	20
Keil. R	U1	HP9	barnes	3 OATS/Mo	NSF/CHE*	18
Kent. 6	VHOI	MP13	Eling	JAN-MAT	WSF/RIDGE	42
Kirchann. 0	DEL	HA6	CAPE HENLOPEN	APR	NSF/CHEK	8
Klein, 1	DutE	SP6A	melville	gust gun	NSF/RGG	16
Klinkhater, 6	OSU	We9	Vecona	Nat	gNR	6
Knab, A	885R	Nag	veatherbird il	THRU-OUT	4SF/PHY	26
Knab. A	8858	HA6	veatherbird it	thru-out	NSF/PHY	70
Kunze, E	W\%	Me9	point sur	AUG-OCT	WSF/PHY	
Lamoseth. 1	LDEO	MP13	EVING	JUN-APR	WSF/00p	30
Lasker. H	Sukt buffalo	HR9	drraca	JW. 40.5	W5F/810	9
Lawer, !	3T	SASA	arlantis it	jak FEB	WSF/OPP	30
Lawer. L	UT	HA9	LOMGHORM	VINTER96/97	NSF/WG6	13
Leduell. J	VH01	SA!	nediun	JAN-KAR	WSF/PHY	36
Ledrell. J	VHOI	Hab	oceanus	MAY	NSF/PHY	15
Lentl. S	VH0!	NA6	oceanus	MAY/JUN	OMR	15
Liechty. J	OKR	MA6/9	SEA diver	JAM	OKR	,
Lilley. 1	UV	HP6/9	LARGE	18A	NSF/RGG	15
Luther, D	hatail	[148	HEL/THOH/ KNORR	JAM	WSF/PHY	29
Mandhan. 1	USC	MP13	ATLANTIS	OCT	WSF/RIDGE	4
Mann, P	UT	SP9A	helville	JAN	NSF/WG6	31
Maraorino. 6	HRL	HA6	CAPE HEMLOPEN	nar	NRL	9
Martin. V	VHOI	HA6	sevard johmson	jut	NSF/CHEN	14

Kartin, i	1-	46:0	CARGE	30 CaCT	2SECHEx	25
Martia, -	4 \%	trio		1-3/4.4t	צri inex	\bigcirc
*ekarus. :	29\%		NELVILS	HIKES		;
NoNutt. ${ }^{\text {a }}$	$8!1$	HP! $1 / 12$	Euing	APR-OCT	NSF/4G6	28
MeCleave. J	0 MatME	WH6. 9	nED/Large	FEB/JUN/SEP	WSF/aio	55
MeClintock. J	If Lemaka	Wht	veatherbien II	IUN	4.NE	ANC
*corkle. ?	ti?	4.4.	C HATERAS:0CE	31: 409	Wit/EES	14
*ccorkle. 1	107?	$4810 \cdot 11$	Large/mave	OCt/woy	4ge/nois	! 5
Mcree. 8	Cacon	44.	PELICAH	MAR \& OCT	NSF/CHEK	24
MeNanus. J	95\%	SPJA.6A.9A	melville	WINTER 96/7	WSF/CHEX	3
Messing. ©	WGUA	HAP	Limr $\}$ SEM J	SPRING	vGF/PaL	6
Michaels. A	835	4P9	point gur	Jun/JuL	272	20
Miller. J	90:	SAJAR3,:	ANY	ANY	NSF/PHY	ANC
Mitchell. 0	*2 ANDS CC	* ${ }^{\text {99 }}$	PELICAN/grRE	JUN	NSF/8IO	14
Mitchell. G	3CPIPPS	W99	ney herizen	IBA	OMR	ANC
Mis. A	动	SA5A	melville	W!NTER96/7	vs:/00F	33
Nolimari. 8	AOM,	SA!/SA2	Large	SUK/FAL	NOAA	70
Nolinari.?	43 x :	WA9	mediuk	SEP	NOAA	20
Montagna, P	31	HAS	LONGHORM	JUN	EPA	4
Nontoys. J	haryarl	We9113	poikt sur	MAY	WSF/8IO	30
Montoy. J	harvarl	HP9/13	POINT SUR	OCT/MEV	WSE/3io	30
Noore. 6	havall	HP12	Eving	mat	nsf/4g6	19
Noore. i	0 AlH	Wrivili/iz	Eaino	atais jum		4 4
Moroan/Black	ScRipps	[$\mathrm{N8}$ / $/ \mathrm{N}!$!	melrilie	[E3	NSF/大EO	35
Moroan/Gabr	3tripps	NP1?	REvELIE	APR	VSF/GEO	6
Moroait. JP	jeripps	4 P 12	Small/MEDIUK	TBA	NSF/GEO	29
Nottl. $\%$	Hevall	SeJ	LARGE	nov	NSF/M6G	48
Mourn. J	O54	MP9	Yecona	Jut/0Ct	NSF/PHY	10
Mullineaur. L	V491	MPI	atlantis/alvin	OCT	NSF/RIDGE	14
Murray. J	1	YP9	BARMES	TBA	WSF/CHER	25
Nucray. J	18	4P9	8APMES	TBA \& APR	Wge/CHEK	17
Murray. J	U	MP9	poikt sur	APR	WSF/CHEN	10
Napihara. S	3^{3} houston	NP 12	Eving	JUN	WSF/RGG	15
Natland. J	Mlast	NP13	MELVILLE/KNORR	JAM/FEB	NSF/RIDGE	19
Nelson, J	stidamay	NA6	bluefin	MAR-NOY	4SF/BIO	20
Nittrouer. ©	stour besor	HP9	UECOMA	Sumber	OWR	16
Nowlin/Whity	tanv	[143/IN4	large	JAN-APR	WSF/PHY	35
O1son/Sosik	H01	AN6/7	LARGE	AUST SUM96	WSF/JGOFS	30
01son/Sosik	6HOI	A $\mathrm{H}_{6} / 7$	LARGE	AUST Sum97	NSF/JGOFS	45
0 Meil. C	navo	MP6/9	Large	MAY-OCT	NAVO	153
0 Heil. C	Havo	4P9	Large	SPRING/Sun	navo	21
Ooso. $)$	6H0!	SAI/3A	(NORR	ANY	WSF/RGS	28
overland. 1	404a	HPS	neprun	*AY/JUN	NOAA	30
Overland. 1	MOAA	NPS	Mediun	Juh/ JuL	noas	30
Paffenofer. G	gridamar	HAb	BLUE EIN	18A	NSF/8IO	12
Paffenofer, S	Stidamar	NAG	Cape hatteras	MAY/JUN	WSF/BIO	25
Paul. J	350 Fl	HA9	pelican	jul	WSF/8IO	12
Peltrer. 5	UH0!	WP12	moane vave	Falll	NSF/CHEN	1
Perfit. ${ }^{\text {P }}$	3 FL	SP!/tMS	KMORR/ALVIK	Sumer	NSF/KGG	24
Perry, 1 J	U	HP9	barues	APR	OMR	2
Perry, 1 J	UY	4P9	BARMES	SEP	SEA grant	3
Persson, 0	W0AA	NAS	large	JAM/FEB	noak	30
Pisias/Rit//Ve	O50	SP7/AN6	THOAPSOK	AUST SUKMER	NSF/JGOFS	??
Pickart, R	vH0!	HA6	END/OCEANUS	FEB	ONR	22

			－warcitu；	ju	¢	－
Pickart．Q	VH0：	NAb	inact ice ini	FE8／4AR	455，ove	4
Pickart．\％	WHOI	Na4	çaous	juL	NSF／GE0	25
Piaeda．J	8 HOI	We9	Sprout	JUK	WSF／VOCE	35
Pillsbury，R	054	［WS／4／3	MELVILIE	Jan	nsp／90p	\％
Purdy．＊	vH0！	HPI？	＊EDIUM	Sprive	WSF！	\＃
Richardson，？	WHO！	542		MAP／APR	719	4 ？
Reid．P	NTAAI	449	ARGE	jEP	vevo	\％
Reynolds．L	HAYO	mp9	cape hatteras	jul／aug	HSF／WGG	24
Rious． 5	EAST CAR U	4ab	runes	Nat	NSF／PHY	？
Rossbyd Talley	birl	Ne4	GYes	JUN	NSF	10
Rove．G	tanu	NA9	CNORR／EUING	AKY	NSF／＊GG	20
Ryan． 1	Levo	Wh4	ecara／med	aUG	WSF／PHY	13
Sonford．I	U	WP9	Gras	MAR \＆JUL	NSF／CHEN	：
Santscti．${ }^{\text {P }}$	TAMU	Hap	Evisf	MAT／aUG	NSE／MGO	S 9
Saurer．${ }^{\text {a }}$	RICE	NA？	enorr	ANY	WSF／RIDGE	3
Seasere．I \＆	U	WA6	CEEANS	SuMKER	＊SF／R12GE	31
Seapere．Ji	38	Hebrio	CAPE HENLOPEN	JUL	4SF／REU	δ
Shard． 1	H0EL	N46	CAPE HENLDPEH	TBA	WSF／	20
Share． 1	UPEL	NAS	－ape hatitras	批	4SF／RGG	4
Shav． 1	0 SC	NAb	capegas	JUL	NSF／810	23
Shere／Sher	950	Np9	－ecoma	Nar	v $4 \mathrm{~F} / 810$	：0
Siebenallef． 1	（5）	Hp9	cerore	ANT	43F／6E0	20
Silva．A	JR1	HP9	gaines	FE8	WSE／LMER	15
Simenstar． 6	Wr	NP9	CAPE HEW DPEEM	JuL	4SF／REU	：
Share．J	WEEL	NA6	CAPE HEM OPES	11	NSF／	5
Sharo． 1	UOEL	NA6	Paint gue	JuL	NSF／BIO	，
Silver， 1	UCSC	HP9	ALPra helix	Juk／JUL	WSF／arctic	28
Slattery． 1	\％RISS	MP5	hlpha helio	SEP97－MAR98	NSF／4Gg	3］
Saith． 0	＊H0I	NP12	Aipha helix	SUKRER	NSF／POLAR	：
Stames，X	ALASTA	HP＇	heatur	aUg	WSE／8IO	－
Stanton． 1	UHOI	MP9	Heatyergiro il	HOY	NSF？	ANC
Steinbero． 0	B88S	HA6	BGPVES	HAR	WSF／CHEN	2
Steaberg．R	U	Hp 6	PEVELIE	JAN	NSF／ODP	12
Steohen，R	VH0I	WP12	PEYELIE	JAN／JUK	NSF／ODP	47
Stephen．R	WHOI	W12	HEATHERBIR日 II	APR／JUK	？7？	10
Steinbero． 1	8BSR	HA6	barmes	Har	NSF／RGG	4
Sternber！．R	U4	HP6	point sur	AAR／APR	WSF／810	30
Stros．S	WV	MP9／13	point sur	OCT／MOU	NSF／810	31
Stron． 5	Wu0	kP9／13	SEA diUER／CAL	aprtaug	WSF／8i0	12
Staint．A	MIARI	NA9	ALPMA HELIX	JUN	Janstec	30
Takilawa．T	JAKSIEC	kP6	arge	MAY	NSF／GEO	30
Taller．L	SCRIPPS	$\mathrm{ma!} \cdot \mathrm{l}$	atlantis／alvin	NOU／DEC	NSF／ECO	\％
Taylor／virsen	VH0I	NPI2	yeatherbird II	FEB／RAY	NSF／TECH	4
Taylor／Doherty	VHOI	NAb	helville	AUST SUK	WSF／KGG	46
Tebbens．S	\checkmark So Fl	Sp6	nebariar	juL	45F／310	10
Thosas／Jounsen	\checkmark MAIME	HA6	atlanils if	JUN／SEP	NSF／RIDGE	5
Tiver． 1	4 HOI	NP9	LARCE／JASOM	HOV／DEC	WSE／RIDGE	）
Tolstoy／For／0r	SCRIPPS	HP13	Mey horizoik	NOU／DEC	NSF／RIDGE	？
Tolstoy／for／0r	SCRIPPS	WP13		AUG	？？？	28
Toole．J	vH0I	Ha9／10		SEP	NSF／RIDGE	34
Tooser，I	U OR	WP13	PELICAM	JUH／JUL	WSF／8io	21
Torres．J	0 So Fl	N月9	remer／al uin	AUSTRAL SUK	WSF／CHEM	15
Trefry．J	FIT	Sp3		AUG	WSF／MG6	10
	OSU	HP9	AMI（SEABEAK）			

	(\because	428	27.1844	1s, $-\cdots$	\cdots	:
Has Dover. :	WURP/aLaska	W ${ }^{\text {P }}$?	ATlantis	Fal!	ve: 2:06E	4
Vain Dover, 6	WURP/ALASKA	S23	atlantis	ANI	4SF/8:0	10
Van Geen	1060	499	POINT SUR/WH	FAll	WSF/MGG	4
Yoss. K	NIAM!	NA6	Calanus	SEP		$?$
Hisht. J	U af S9 Ft	409	pelican	AUG/SEP/OCT	45:/2NE0	:0
Vard. 8	UCSC	4 P	point gur	jah/mar/mar	NS5/8:0	?
Merrea/viruid	H01	:43/4/5	: RRGE	i3A	NSF/iuce	35
Watts, R	Whe	MA6 67	ENDEAVOR/OCEA	SEP	WSE/voce	13
Vebt. S	Scripps	NP9	UECOMA	MAY	NSF/ODP	6
Yetb. S	scripgs	HP9	HEV HORIL/ME!	SuMmer	NGF/Wg6	12
Veideasn, A	HRL	HA6	SEVARD JOHNSON	MAY	NR!	16
Heideama, A	49:	H46	EDUIN Lisk	APR/Mat	WR!	30
Veller. R	NOAA	4P13	KNORR	APR	hgat	40
vilcock. y	4	4 P 9	AHY	AUG/SEP	Wge OCNIEC	I
dilcock.	4	ne9	bapnes	Sp/gun/vini	wifocutie	j
Villias, A	vHI!	446	oceanus	JAMKAP2	OMR	10
Whitledoe. I	UT	HAP	LONGHORH	Jul	WSF/REU	12
Yamaoto. T	Mcant	4 P 13	revelle	OCT	NSF/ODP	5
Young. ©	H80!	4A5	SEVARD Johmson	SUMKER	219	20
Younc. C	4801	WAS	Evilim Lix	mayidut	112	25
lafiriou, 0	WHO!	4HC	veathergich it	*AR	WGF CHEA.	3
laneveid. R	05\%	HA6	Sevamid jumbion		jiNF ${ }^{\text {a }}$?!

APPENDIX V
98-by-PI

98-by-PI

Greene, G	MLML	NP13	POINT SUR	JUN	NSF/MGG	21
Harbison, R	WHOI	NA6	MEDIUM	JAN-MAR	NSF/JGO	10
Harbison, R	WHOI	NA6	OCEANUS/ISELIN	JUN/JUL	NSF/BIO	26
Hautala, S	UW	NP9	WECOMA	JAN/MAR/A	NSF/PHY	54
Hautala, S.	UW	NP9	WECOMA	JAN/M/S	NSF/PHY	
Hickey, B	UW	NA9	SEA DIVER/JOHNSO	FEB	NSF/PHY	
Hickey, B	UW	NA9	SEA DIVER/JOHNSO	MAY	NSF/PHY	
[ideker,	Ww	NA9	SEA DIVER/EEW - 30	fleb/MAY	NGP/PIty	
Houde, E	CHESAPEPAKE BI	NA6	CAPE HENLOPEN	JUN/JUL	NSF/BIO	5
Jahnke, R	SKIDAWAY	SP1/NA10/	LARGE	SEP	NSF/CHE	33
Jahnke, R	SKIDAWAY	NA10/6	MEDIUM (HATTERAS	Jun	NSF/CHE	14
Johnson, Ken	MLML	NP9	WECOMA	JUN \& OCT	NSF/CHE	30
Joyce, T	WHOI	NP13	MEDIUM/LARGE	MAR	NSF/MGG	14
Jude, D	U MICH	GL4	LAURENTIAN	JUN/JUL	NSF/EPA	2
Jumars, P	UW	NP6	BARNES	THRU-OUT	NSF/BIO	6
Jumazer, -	Ww	NP6	barnes		NGF/bIo	
Karsten, J	HAWAII	NP9	ATLANTIS/ALVIN	JUN-SEP	NSF/MGG	8
Keil, R	UW	NP9	BARNES	TBD	NSF/CHE	6
Klein, E	DUKE	SP6A	MELVILLE/LARGE	AUSTRAL S	NSF/MGG	23
Lasker, H	SUNY BUFFALO	NA9	URRACA	AUG	NSF/BIO	
Ledwell, J	BIGELOW	SA1	MEDIUM	MAR	NSF/PHY	
MacDonald, I	tamu	NP6	ATLANTIS	JUL	NSF/BIO	10
Manahan, D	USC	NP13	ATLANTIS/ALVIN	APR/OCT	NSF/RID	
Mann, Paul	U TEX	SP6A	MELVILLE	JAN-FEB	NSF/MGG	37
Martin, W	WHOI	NA10/SA1	LARGE	AUG/SEP	NSF/CHE	25
Mcclintock, J	U ALABAMA	NA6	WEATHERBIRD II	JUN	NSF?	0
Michaels, A	BBSR	NP9	POINT SUR	JUL	NSF/	0
Michaels, A	BBSR	NA6	WEATHERBIRD II	JANGJUL	NSF]	0
Moffett, J	WHOI	NA6	oceanus	AUG	NSF/CHE	5
Morgan, J P	SCRIPPS	NA9	SMALL/MEDIUM	TBA	NSF/GEO	29
Moum, J	OSU	NP9	WECOMA	JUL\&OCT	NSF/PHY	10
Mullineaux, L	WHOI	NP1	ATLANTIS/ALVIN	OCT	NSF/BIO	0
Murray, J	UW	NP9	BARNES	TBA	NSF/CHE	
Murray, J.	UW	NP9	BARNES	TBA	NSF/CHE	10
Murray, James	UW	NP9	POINT SUR	TBA	NSF/CHE	10
Nelson, J	SKIDAWAY	NA6	BLUE FIN	JAN\&MAY	NSF/BIO	
Nelson, J	SKIDAWAY	NA6	BLUE FIN	EVERY 2 M	NSF/BIO	40
Oppo, D	WHOI	SA1-SA3A	KNORR	ANY	NSF/MGG	28
Pawlik, J	UNC WILIMINGTO	NA6	SEWARD JOHNSON	JUN	NSF/BIO	4
Peterson, R	SCRIPPS	NA9	oceanus	NOV	NSF?	8
Peterson, R	SCRIPPS	NA10	oceanus	FEB	NSF?	20
Proctor, L	FSU	NA6	WEATHERBIRD II	MAY	NSF/BIO	
Proctor, L	FSU	NA6	WEATHERBIRD II	APR\&AUG	NSF/BIO	10
Rowe, G	TAMU	NA9	GYRE	JUN	NSF	10
Scranton, M/Cochran J	STONY BROOK	NA6	CAPE HENLOPEN	MAR/SEP/D	NSF?	21
Sharp, J	UDEL	NA6	CAPE HENLOPEN	JUL	NSF	
Sharp, J	UDEL	NA6	CAPE HENLOPEN	TBA	NSF/	20
Silver, M	UCSC	NP9	POINT SUR	JUL	NSF/BIO	10
Stanton, T	WHOI	NA6	OCEANUS/MEDIUM	AUG	NSF/BIO	
Staton T	WHOI	NP9	MEDIUM	AUG	NSF/BIO	6
Steinberq, D	BBSR	NA6	WEATHERBIRD II	APR/JUN	???	10

APPENDIX VI

APPENDIX VII

Code N35

14
of
4
4
4
4

UNOLS/NAVO PARTNERSHIP(cont)
mod Realize NAVO manpower savings by using
UNOLS ships.
n" Keep our customers happy by satisfying high
priority requirements.
Unexpected funding cuts in oceanographic
fleet activities have increased need.
This is the start of a mutually beneficial
long term partnership.
PARTNERSHIP ACCOMPLISHMENTS
What's been done so far.
$\mathrm{m} \rightarrow$ Fleet Improvement Committee meeting in August 95 .
\quad Initial concept discussed.
\rightarrow Fleet Improvement Committee and Council meeting in
November 95.

\quad| Hosted at NAVO - Familiarity with NAVO ops |
| :--- |
| and NAVO reps to committees assigned. |

PARTNERSHIP ACCOMPLISHMENTS
$\|$ Ship scheduling review in June 96.
$\quad \Rightarrow$ Reviewed options
UNOLS Executive Secretary review in August 96.
\rightarrow Finalized plan
n What's planned
$\begin{array}{rl}\mathrm{m} & \mathrm{Scheduling} \text { meeting in September } 96 . \\ & \quad \text { Actual assignment of ships }\end{array}$
MILITARY SURVEYS/MARINE SCIENTIFIC

\quad UNOLS conducts marine scientific research
\Rightarrow Must request access to EEZ's
\Rightarrow Must share data collected
\Rightarrow May have foreign observers aboard
Bottom line is that foreign exclusive economic zones affect
research activities not military surveys.
"IIL FY 97 plans are for NAVO/UNOLS work in US EEZ's and
broad ocean areas.

m" Long Island, Savannah GA, Jacksonville FL. continental slope
stability study.
$\quad \Rightarrow$ Oceanography

\quad Straits of Juan De Fuca USN training area study.
\quad Oceanography
$m \times 4$. North Carolina, Onslow Bay seafloor study.
\Rightarrow Oceanography
unt Southern California - Santa Rosa/Cortes Ridge and
Tanner/Cortes Bank USN fleet training range
$\quad \Rightarrow$ Bathymetry/Oceanography
nutGulf of Alaska gravity survey.

* Geophysical
4 East, West and Gulf coast areas (seasonal variance studies)
\Rightarrow Oceanography

IT/ $6^{\circ} d$
NEAR TERM ISSUES
> wata required to IHO standards.
> Data format processing compatibility.
> Security requirements for gravity surveys.
> Data releasability.
> Lack of defined UNOLS/NAVO coordinating processes.

military survey data is restricted.
\Rightarrow Data restrictions due to distinction between

military surveys and research activities.

