

AUTOMATED METEOROLOGICAL AND OCEANOGRAPHIC SYSTEM (AMOS)

Presented by

AUBRI VAIL

UNIVERSITY OF MIAMI

AT INMARTECH 2014

OREGON STATE UNIVERSITY, CORVALLIS, OREGON

OCEANSCOPE

- AMOS was designed and deployed for the OceanScope project
- Development supported by Royal Caribbean Cruises Limited, the parent company of Royal Caribbean International and Celebrity Cruises
- The automated observing system is a pilot program initiated by the formal partnership between RCCL and the University of Miami

AMOS BENEFITS

- Uses "off-the-shelf" components
- Uses National Instruments cRIO Real Time Controller
- Program and data are stored in solid-state memory, therefore eliminating rotating storage with high potential for failures
- Critical functions are executed in an FPGA, improving reliability
- Written in LabVIEW Graphical Programming Language
- Leak detection: automatic shutdown with audible and visual alarms
- Pressure monitoring: programmable over pressure level signals automatic shutdown

AMOS BENEFITS CONT'D...

- Bypass valve allows regulation of system pressure and flow
- Bio-fouling controlled through fresh water flushing and mechanical wipers
- Pump monitoring provides protection if air bound due to high sea conditions
- Exclusion zones system turns on and off automatically based on predetermined coordinates – reducing system contamination in ports and eliminates ship's "discharge"
- Network Camera provides real time observation of system and valve states
- Remote monitoring
 - Allows diagnosis of problems with system state
 - Permits instruction of crew members to perform tasks/maintenance on the system

RCCL – EXPLORER OF THE SEAS

FUN FACTS - Size and capacity comparison 137,308 GT 311m (1,020 ft) 3,114 passengers 1,180

- Legacy System installed in 2000
- System was manned from 2000 -2007
- Redesigned in 2008
- Included fully automated functionality

INSTRUMENTATION

- AMOS
- ADCPs (38 & 150 kHz)
- MAERI
- Decommissioning science equipment in February 2015
 Moving instrumentation to Freedom of the Seas

USS NIMITZ

FUN FACTS - Size and capacity comparison 100,020 GT 332.8m (1092 ft) 3200 Ship's company, Air wing

FUN FACTS – Size and capacity comparison 154,407 GT 339m (1,112 ft) 3,634 passengers

- Replaces EXPLORER of the SEAS science installation
- Scouting trip scheduled early November 2014
 - Meet staff –
 Environmental and
 Engineering officers and
 crew
 - Find potential locations for equipment
 - Discuss timeline, assistance required, potential issues
 - Dry dock Jan 2015
 - Bow intake anddischarge
 - Seachests for ADCPs

AMOS PARAMETERS EXPLORER OF THE SEAS

- Sea Surface Temperature
- Sea Surface Salinity
- Turner Designs C6 Fluorometer
 - Chlorophyll a
 - DOM
- Auxiliary system
 - pCO₂

RCCL - ALLURE OF THE SEAS 225,282 GT 362m (1187 ft) 6,296 passengers 2,384

- Installation in 2012
- AMOS MK III
- Seawater intake located mid-ship, tapped from ship's main seachest
- Met data provided by ship's sensors
- Dry dock in 2015
 - Relocate AMOS to bow thruster space
 - Install 75 kHz ADCP
 - Auxiliary pCO₂

CELEBRITY – EQUINOX

FUN FACTS - Size and capacity comparison 121,878 GT 317.2m (1,041ft) 2,850 passengers 1,250 c

- Latest Cruise Ship Installation
- Cadiz, Spain
 - May 2014

NEWEST AMOS INSTALLATION – EQUINOX

- Located in bow thruster space
- Dedicated through hull valves PARAMETERS
 - Sea Surface Temperature
 - Sea Surface Salinity
 - Turner Designs C6
 - DOM
 - Chlorophyll a
 - Turbidity
 - Phycoerythrin (Cyanobacteri
 - Crude Oil
 - Optical brighteners (detergents)
 - Auxiliary System
 - pCO₂ (soon)

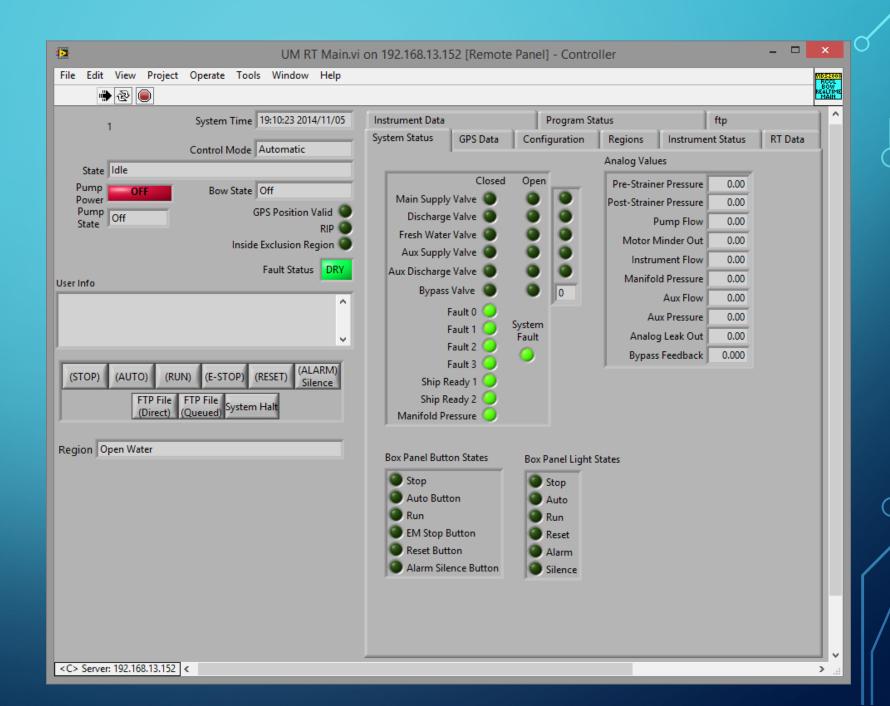
INSIDE THE BOXES

Dry Box Wet Box

NI cRIO-9024 Real-Time Controller

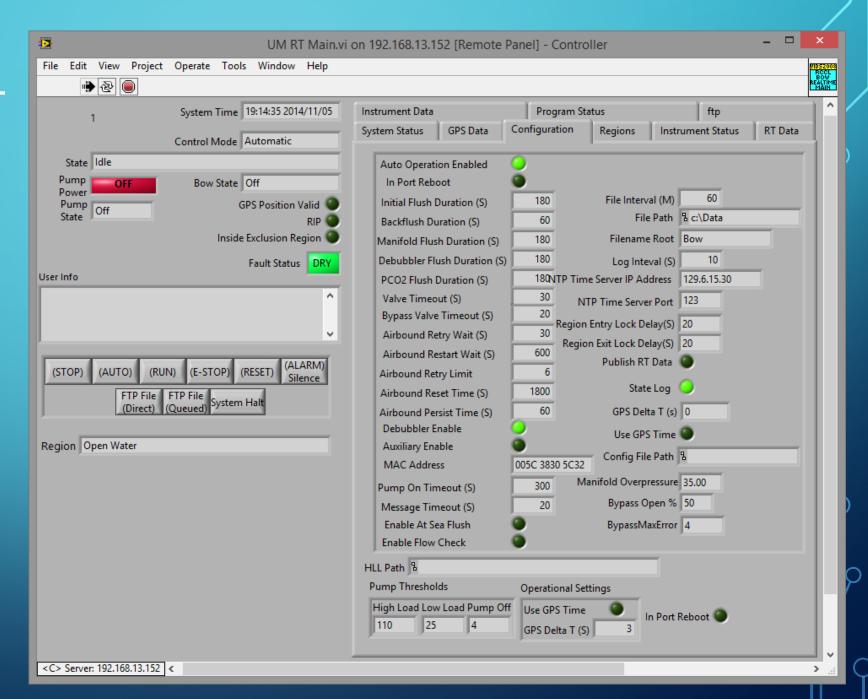
- Embedded controller runs LabVIEW Real-Time for deterministic control, data logging, and analysis
- 800 MHz processor, 4 GB nonvolatile storage, 512 MB DDR2 memory
- Dual Ethernet ports with embedded Web and file servers for remote user interfacing 10/100 &10/100/1000
- Hi-Speed USB host port for connection to USB flash and memory devices
- RS232 serial port for connection to peripherals; dual 9 to 35 VDC supply inputs
- -20 to 55 °C operating temperature range
- Operating humidity
 - (IEC 60068-2-56) 10 to 90% RH, noncondensing
- Vibration
 - Random (IEC 60068-2-64) 5 grms, 10 to 500 Hz
 - Sinusoidal (IEC 60068-2-6) 5 g, 10 to 500 Hz
- Operating Shock
 - (IEC 60068-2-27) 30 g, 11 ms half sine, 50 g, 3 ms half sine, 18 shocks at 6 orientations

NI cRIO-9114 RECONFIGURABLE CHASSIS

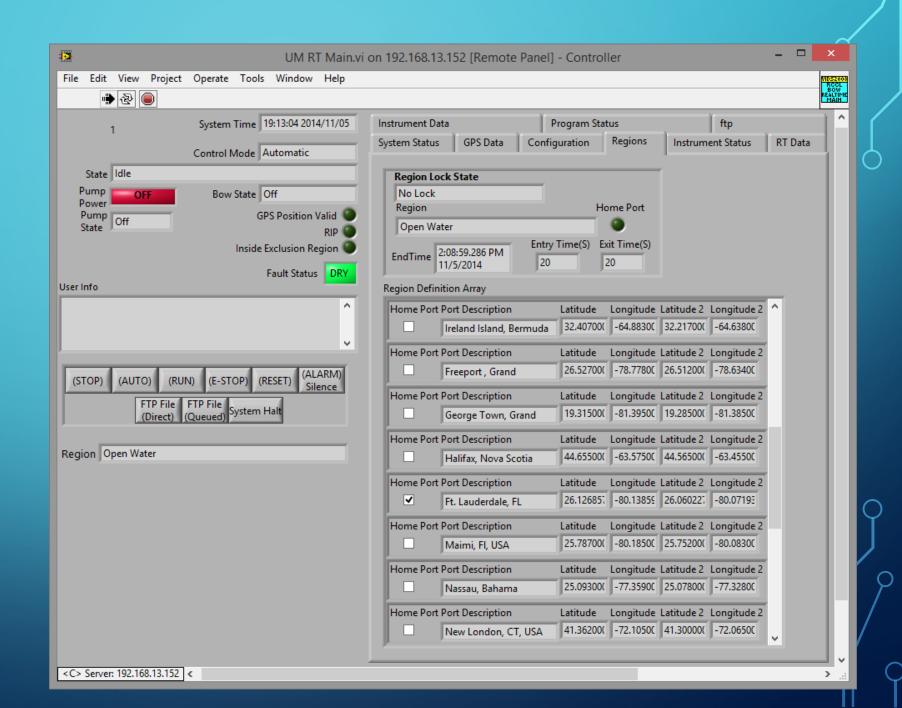

- 8-Slot, Virtex-5 LX50 cRIO Reconfigurable
 Chassis
 - Number of flip-flops 51,840
 - Number of 6-input LUTs 28,800 (Look Up Tables)
 - Embedded block RAM 3,456 kbits
- LabVIEW FPGA automatically synthesizes electrical circuit implementation
- cRIO extreme industrial certifications and ratings
- cRIO FPGA core executes at default rates of 40 MHz

I/O MODULES INSTALLED

- NI 9208 +/- 21.5 mA, Current Analog Input, 500 S/s. 16 Ch Module
- NI 9425 24 V, Sinking Digital Input, 32 Ch Module
- NI 9265 0 to 20 mA, Analog Output, 100 kS/s/ch, 4 Ch Module
- NI 9485 SSR Relay, 60 VDC/30 Vrms, 750 mA, 8 Ch Module
- NI 9481 (3) 4-Channel Relay [30 VDC (2 A), 60 VDC (1 A), 250 VAC (2 A)]


REMOTE PANEL

SYSTEM STATUS


REMOTE PANEL

ON ON DISPLAY

OREMOTE PANEL

EXCLUSION ZONES

SEA-BIRD SBE 38 DIGITAL OCEANOGRAPHIC THERMOMETER

- Range: -5 to +35 °C
- Initial Accuracy 1: ± 0.001 °C (1 mK)
- Resolution: 0.00025 °C (0.25 mK)
- Stability: 0.001 °C (1 mK) in six months, certified
- Response Time ²: 500 milliseconds
- Self-heating Error: less than 200 μK

SEA-BIRD SBE 45 MICROTHERMOSALINOGRAPH

	Conductivity	Temperature (°C) *	Salinity (PSU), typical
Measurement Range	0-7 S/m (0-70 mS/cm)	-5 to 35	
Initial Accuracy	± 0.0003 S/m (0.003 mS/cm)	± 0.002	± 0.005
Typical Stability (per month)	0.0003 S/m (0.003 mS/cm)	0.0002	0.003
Resolution	0.00001 S/m (0.0001 mS/cm)	0.0001	0.0002
Calibration Range	0-6 S/m (60 mS/cm), physical calibration over the range 2.6 to 6 S/m (26- 60 mS/cm), plus zero	+1 to +32 °C	

SBE 360
CAROUSEL
SAMPLER
ABOARD
ALLURE OF
THE SEAS

TURNER DESIGNS C6 MULTI-SENSOR PLATFORM WITH MECHANICAL WIPER

• The C6™ Multi-Sensor Platform integrates up to six Cyclops-7™ fluorescence and turbidity sensors for extended or short-term deployments. The C6[™] provides individual automatic gain control, calibration, and digital data reporting for each Cyclops-7™ sensor. Each C6 comes with factoryinstalled temperature and pressure sensors.

TURNER DESIGNS SENSORS AVAILABL

Application	Minimum Detection Limit	Dynamic Range
CDOM/FDOM	0.15 ppb 0.5 ppb	0-1250 ppb 0-5000 ppb
Chlorophyll <i>in vivo</i> Blue Excitation Red Excitation	0.025 μg/L 0.5 μg/L	0-500 μg/L >500 μg/L
Fluorescein Dye	0.01 ppb	0-500 ppb
Oil - Crude	0.2 ppb	0-2700 ppb
Oil - Fine	10 ppb 10 ppm	>10,000 ppb >100 ppm
Optical Brighteners	0.6 ppb	0-15,000 ppb
Phycocyanin (Freshwater Cyanobacteria)	2 ppb	0-40,000 ppb
Phycoerythrin (Marine Cyanobacteria)	0.15 ppb	0-750 ppb
PTSA Dye	0.1 ppb	0-650 ppb
Rhodamine Dye	0.01 ppb	0-1000 ppb
Tryptophan	3 ppb	>20,000 ppb
Turbidity	0.05 NTU	0-3000 NTU

MSRC VDB-1 VORTEX DEBUBBLER

- Developed at Stony Brook University's Marine Sciences Research Center (MSRC)
- 2 inch diameter, internal volume approximately 0.5 liter. Suggested flow rate 9 to 12 liters per minute (2.4 3.2 gallons/min).
- Contact:

Thomas.Wilson@stonybrook.edu

DIGITAL LOGGERS INC – WEB CONTROLLED, 8 CHANNEL DIN RELAY

Allows remote power cycling of individual instrumentation

- cRIO
- SBE 38 Remote Temperature Sensor
- SBE 45 MicroTSG
- Turner Designs C6

LOAD CONTROLS PMP-25

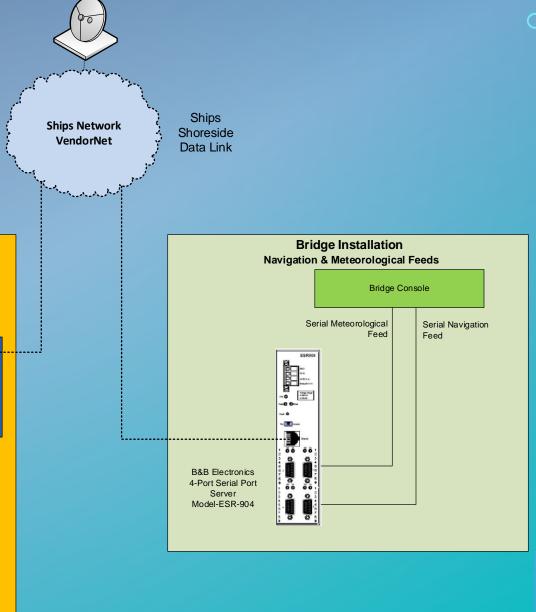
- Monitors Load on Pump
 - Dry Running
 - Overload
 - Cavitation
 - Bearing Failure

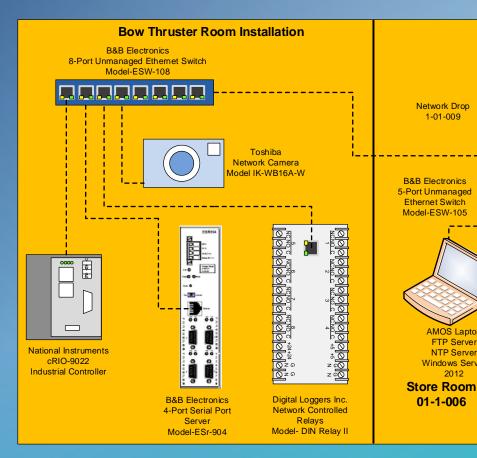
PRESSURE AND FLOW

Omega Absolute Pressure Gauge

- Monitors pressure at multiple points
 - Pre-strainer
 - Post-strainer
 - Instrument Manifold
- 316 Stainless S
- 4-20 mA outp
- Loop Powered

Dynasonics Clamp-On Transit Time Ultrasonic Flow


- Monitors pump and sensor flow externally
- No wet or moving parts (no fouling)
- Outputs
 - Serial


B&B ELECTRONICS ESR904 ETHERNET TO SERIAL CONVERTER

- Supports either UDP or TCP protocols
- Allows transmitting to and receiving from multiple IP addresses
- Used to interface ship's bridge sensors (GPS, Gyro & Meteorological) to AMOS
- Internal AMOS interface
 - SBE 38 Remote Temperature Sensor
 - SBE 45 Microthermosalinograph
 - Turner C6

AMOS BLOCK **DIAGRAM**

Network Drop

1-01-009

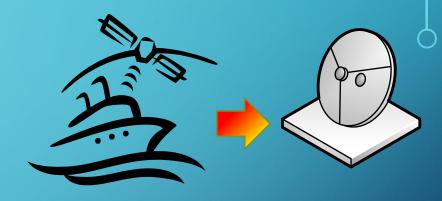
AMOS Laptop FTP Server

NTP Server

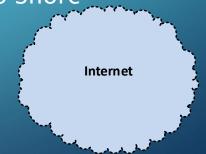
Windows Server

2012

01-1-006

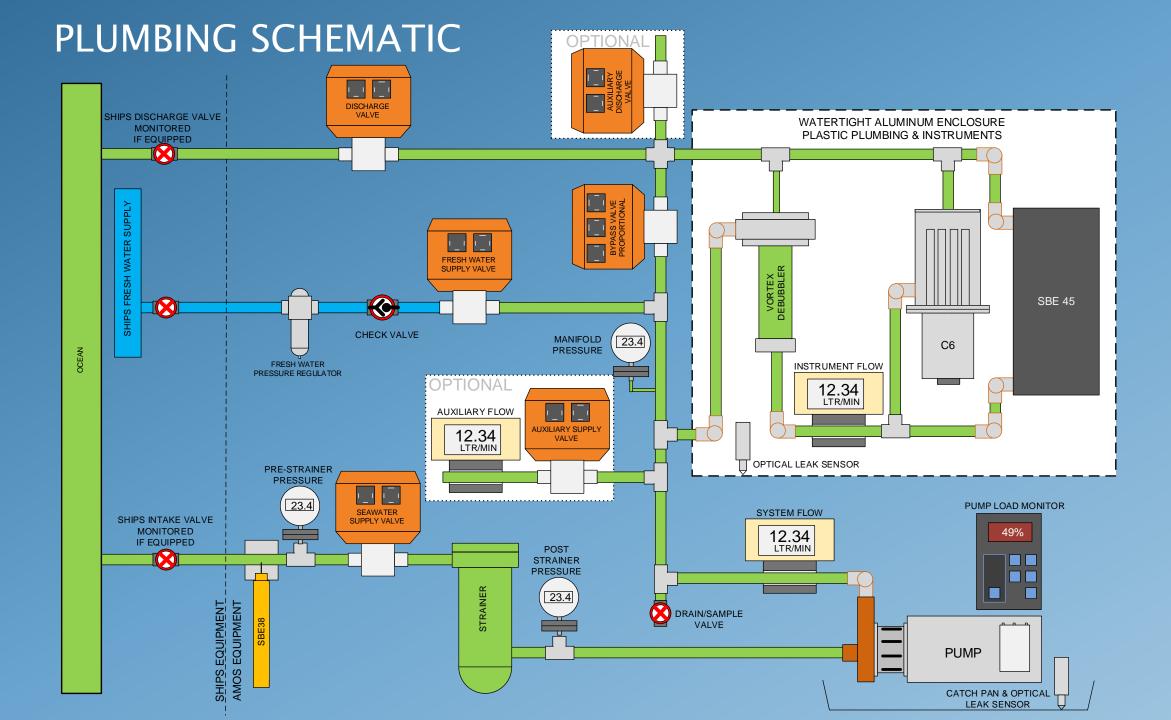

Ship Supplied Network -----Science Supplied Network - - - - - - - - -

DATA FLOW



Data stored locally on cRIO, transferred hourly by FTP to AMOS laptop

Data stored on AMOS laptop on a RAID drive



Satellite Connection – Ship to Shore

Data pulled by FTP from AMOS laptop to RSMAS Server

THANK YOU

- Royal Caribbean/Celebrity Cruise Lines
- Crew of:
 - Explorer of the Seas
 - Allure of the Seas
 - Equinox
 - Freedom of the Seas
- NOAA
- NSF
- NASA

CONTACTS

- Peter Ortner OceanScope portner@rsmas.miami.edu
- Rich Findley Technical Director <u>rfindley@rsmas.miami.edu</u>
- Aubri Vail Technical Manager avail@rsmas.miami.edu
- Elizabeth Williams Program Manager ewilliams@rsmas.miami.edu
- Jim Lovin Labview Programmer <u>jlovin@rsmas.miami.edu</u>
- Miguel Izaguirre MAERI mizaguirre@rsmas.miami.edu
- Kevin Sullivan pCO₂ <u>kevin.sullivan@noaa.gov</u>