

#### Development of a New Generation Ocean Bottom Seismometer (OBS2G) for large-scale seismic survey

#### Research Fleet Department Masato Sugano



INMARTECH 2014 18–21 November 2014 Corvallis, Oregon, USA Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

### Contents

- about JAMSTEC
- About JAMSTEC OBS
- New generation OBS "OBS2G"
- Future
- Appendix: new glass sphere made in JAPAN

#### JAMSTEC Fleet (Research Vessels)

| NATSUSHIMA | KAIYO   | YOKOSUKA | KAIREI       | MIRAI         |
|------------|---------|----------|--------------|---------------|
| 1981       | 1985    | 1990     | 1997         | 1997          |
| 67×13m     | 62×28m  | 105×16m  | 105×16m      | 128×19m       |
| 1,739t     | 3,350 t | 4,439 t  | 4,517 t      | 8,706t        |
| A state    |         |          | Coming soon! |               |
| ΗΑΚՍΗΟ     | SHINSEI | CHIKYU   | ???          |               |
| 1989       | 2013    | 2005     | 2016         | Completion    |
| 100×16m    | 66m×13m | 210m×38m | app.100m×19m | Length*Beam   |
| 3,991 t    | 1,629 t | 56,752t  | app.5,800t   | Gross Tonnage |

#### JAMSTEC Fleet (Submersible & Vehicles)

| LANISSO 1                      |                    |                    |                          |                                      |
|--------------------------------|--------------------|--------------------|--------------------------|--------------------------------------|
| SHINKAI 6500                   | KAIKO<br>7000 II   | HYPER–<br>DOLPHIN  | URASHIMA                 | Deep-Tow                             |
| Deep<br>Submergence<br>Vehicle | ROV<br>7000m Class | ROV<br>3000m Class | Deep Sea<br>Cruising AUV | Deep Ocean<br>Floor Survey<br>System |

- Radiosonde Balloon

Radiosonde →

**Marine Observation Systems** Investigating the Atmosphere 航法衛星 気象術員 Investigating the Ocean かいれい サブボットム カコファイラ マルチナロービーム 音響測深る 270 いこう7000 プロトン磁力計 響トランスポンダ Investigating the Seafloor 37000 ビストンコア ノッシャ サンプラ

Investigating the Subsurface Structure

気象街星

14/23 40

JAMSTEC

TRITON

GODI 株式会社 グローバル オーシャン ディベロップメント

#### Nippon Marine Enterprises, Ltd.

← Radiosonde Balloon

### about JAMSTEC OBS

### about OBS

- Two applications
  Seismic observation
  - To study the structure under the seabed
- Stand-alone system containing; 3 component seismometers Recording device Battery Acoustic transponder Flasher/Beacon
- Deployed on Seafloor by free-fall or ROV



### about JAMSTEC OBS

- Basic structure was developed by Univ. of Tokyo, Hokkaido Univ. etc. almost 20 years ago
- Compact and low-cost based on 17-inch glass sphere
- Deployed by free-fall and recovered by self-popup releasing

#### ballast with acoustic command



### about JAMSTEC OBS

- JAMSTEC introduced 100 OBSs in 1999
- Usually, several tens OBSs employed at one experiment
- More than 5000 OBSs deployed for15 years
- However, thousands, even several hundreds in a experiment are still impractical

Several 100s to 1000 OBSs More Demanding 1000

Current Seismology

2D structure







3D structure

future







recovery rate (%)

#### about JAMSTEC OBS

Why are the thousand OBS units impractical?

- Operation and maintenance difficulty glass sphere, cables, connectors, O-rings data access, battery etc.
- Weight and size safety handling and deck space
- Cost



### **Requirement of recent seismology**

- Dense deployment
- 3–D grid
- Mechanical transmission response
- Bottom sensor-coupling



### New OBS – "OBS2G"

#### **OBS2G**

2<sup>nd</sup> Generation OBS to grid





Nippon Marine Enterprises, Itd. (NME)



Japan Agency for Marine-Earth Science Technology (JAMSTEC)

- Started the development from 2010
- Prototype "OBS2G" accomplished at May 2012

### OBS2G – structure



### **OBS2G – Superiority**

- All components are housed in 13in. glass sphere
- Light weight (35 kg)
- Maximum operation: 1000 or more for 4000 ton class vessel



### **OBS2G – Superiority**

- Wireless Battery Charge
- Wireless data communication
- Auto GPS time synchronization
- Maintenance and setup is very easy





#### Comparison - OBS2G vs. Conventional

|                              | OBS2G                                                 | Conventional OBS                |  |
|------------------------------|-------------------------------------------------------|---------------------------------|--|
| Weight (w/o ballast)         | 35 kg (20kg)                                          | 98 kg (43kg)                    |  |
| Pressure Housing             | 13 inch glass sphere                                  | 17 inch glass sphere            |  |
| Observation period           | 30days(accelerometers)<br>40days(geophones)           | 40 days                         |  |
| Sampling                     | 100/250/500/1000Hz                                    | 100/250Hz                       |  |
| Seismic Sensors              | 3C accelerometer (or 4.5Hz<br>geophones) + Hydrophone | 4.5 Hz geophone +<br>Hydrophone |  |
| Dynamic range                | >130 dB (24bit) at 100 Hz SPS                         | 75dB (16bit)                    |  |
| Batteries                    | All rechargeable (Li-ion)                             | Li-ion / Lithium / Alkaline     |  |
| Communication                | IEEE801.11n                                           | RS232                           |  |
| Ballast release<br>mechanism | Fuse String                                           | Electric corrosion              |  |
| Maximum Operating depth      | 7,000m                                                | 6,000m                          |  |

#### Sea Trials and actual observation





Shallow water (30m)





Ultra-deep water (7,000m)



Deployed and Recovered at Japan Trench

| Line-u                 | O<br>OBS2G<br>for large-scale                                               | OBS2G-L                         | OBS2G-UD                        |
|------------------------|-----------------------------------------------------------------------------|---------------------------------|---------------------------------|
|                        | operation                                                                   | observation                     | for Ultra Deep Sea              |
| Weight(w/o Anchor)     | 35 kg (20 kg)                                                               | 77 kg (39 kg)                   | 105kg (53 kg)                   |
| Size of glass sphere   | 13 inch                                                                     | 17 inch                         | 17 inch                         |
| Recording period       | 30 days<br>(accelerometers)<br>50 days(geophones)                           | 300 days                        | 180 days                        |
| Sampling               | 100/250/500/1000Hz                                                          |                                 |                                 |
| Sensor                 | 3 axis low-noise<br>accelerometers(or<br>4.5Hz<br>geophones)+<br>hydrophone | 4.5 Hz geophones+<br>hydrophone | 4.5 Hz geophones+<br>hydrophone |
| Dynamic range          | >130dB(24bit)                                                               |                                 |                                 |
| Power                  | Li-ion Batteries (wireless charging)                                        |                                 |                                 |
| Communication          | IEEE802.11n wireless LAN                                                    |                                 |                                 |
| Anchor release         | Fuse string                                                                 | Forced electrical corrosion     | Forced electrical corrosion     |
| Max. operational depth | 7,000 m                                                                     | 6,000 m                         | 11,000m                         |

#### Example of practical use

- OBS2G-L for Sea of Marmara, Turkey
- Project of Earthquake and Tsunami Disaster Mitigation in the
- Marmara Region and Disaster Education in Turkey ; JICA)
- Mar Jun 14 : Sea trial (Successfully completed)
- Sept 14 Jul 15 : Long term observation





#### Future Plan in the New Vessel







#### about 400 OBS2G!







2-D and 3-D Multi Channel Seismic survey system

## appendix. New 13 inch Glass sphere made in Japan!



OKAMOTO GLASS CO., LTD. Established 1928 Free-fall type Deep sea investigation shuttle device "EDOKKO -1"

# appendix. New 13 inch Glass sphere made in Japan!



### Summary

- JAMSTEC has operated total over 5,000 OBSs.
- Its recovery rate achieved about 98%
- However, conventional way of operation is not impractical.
- Thus, we developed new OBS ("OBS2G").
- It is more compact and easy to hundle.
- Recording system achieved 135dB wide dynamic range, high clock accuracy with small power consumption
- And we succeeded to develop new glass sphere that is made in JAPAN.
- > The new Japanese Glass sphere, it contributes cost saving
- Its quality is stable.

# Thank you for your attention !