2D and 3D multichannel seismic method: Deep imaging, amplitudes and velocities

Mutter & Carton (2013); History of Moho reflection imaging across ocean basins since 1970s

Early 2D imaging of reflection Moho; East Pacific Rise from R/V *Conrad*

- (a) Herron et al. (1980), 1976 survey
- (b) Stoffa et al. (1980), 1976 survey

Barth & Mutter (1996), 1985 survey

Early 3D imaging of reflection Moho; East Pacific Rise from R/V *Ewing*

Singh et al. (2006), 1997 survey

(a,b) Same view into 3D cube but with different color scales

(c,d) Cross-axis and along-axis sections from 3D cube, respectively

Image slices from 3D prestack migrated cube

2

Picked seafloor, AML, OAMLs and Moho surfaces

3D prestack time migration

Common image gathers (CIGs) before (a) and after (b) LIFT filtering (Choo et al., 2004)

2D prestack depth migration

Summary (direct method)

2D/3D MCS data collection & processing to from reflection images of oceanic crust have greatly improved since the first 1976 EPR survey

- Powerful tuned source = increased vertical resolution
- Denser observation = increased lateral resolution
- Longer streamers = higher fold = higher signal2noise ratio
- Longer streamers = better velocity model = better imaging
- Longer streamers = seismic attributes = rock properties

-1976/1985 EPR 9% 13% surveys:~55% 30% Moho imaging-1991 EPR 14% survey:~30% Moho imaging-2002 JDF survey:>60% Moho imaging-2008 EPR 3D survey:~89/92% Moho imaging

Summary (indirect method)

Petroleum industry standard today are 3D wide-azimuth multi ship long streamer multichannel seismic surveys

Reflection imaging is the last tool they would let go