SuPort: Appraising Port Sustainability

ARUP

INCHIC ETPRESS

Arup

Craig Covil

Agenda

- Intro to Arup
- Climate Change Risks: Implications to Maritime
- Plausible Futures for Ports in 2050
- SuPort: Port Sustainability Appraisal Tool
- Tomorrow break out session
 Greening Port Facilities

We are an independent firm of designers, planners, engineers, consultants and technical specialists offering a broad range of professional services.

- Sir Ove Arup founded his practice in London in 1946 based on a belief in 'total design'
- Today we understand this as a commitment to sustainability.

On site at the Sydney Opera House, 1966

⁴ RDU Terminal C Design – SMEP & Sustainability Consultants

UC San Diego, Scripps Institution of Oceanography Vaughan Hall Replacement Facility, La Jolla, California

6 Worldwide Presence | Over 10,000 staff * in more than 90 offices * in over 30 countries

7 Total Design

Costa Azul LNG, Baha California

- 25m water depth
- 100 year design wave condition
 - Hs = 8.5m
 - Tp = 14.3s

Acoustic consulting Advanced geometric design

- Advanced technology and research
- Airport planning
- Architecture
- Audio visual and multimedia
 - Bridge design Building design
 - **Building modelling**
 - Building physics
- Civil engineering
- Cost management
- Economic planning Economics and
- planning
- Electrical engineering
- **Energy** strategy

- Environmental consulting Facade engineering **Facilities management** Fire Fluid dynamics Geotechnics Hydrogeology Infrastructure design Interchange design International development IT and communications systems Landscape architecture
- Lighting design
- Management consulting
- Maritime engineering

- Masterplanning Materials Mechanical engineering Oil and gas engineering **Operations consulting Planning** policy advice **Power generation** Product design **Project management Public health** engineering Quantity surveying **Renewable energy** Research Resilience, security and rîsk.
- Seismic design
- Site development
- Software products

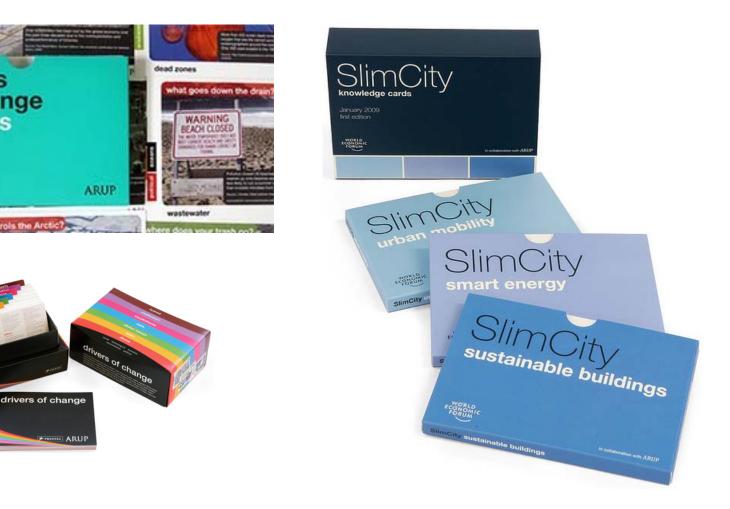
- Specialist technical services
- Sports architecture
- Structural engineering
- Sustainability consulting
- Sustainable buildings design
- Sustainable infrastructure design
- Theatre consulting
- Town planning
- Transaction a dvice
- Transport consulting
- Tunnel design
- Urban design
- Vertical transportation design
- Water engineering
- Wind engineering

ARUP

9 Total Design

Rating Tools & Building Performance Labeling

Drivers of Change Oceans


drivers

oceans

A.D.L.P

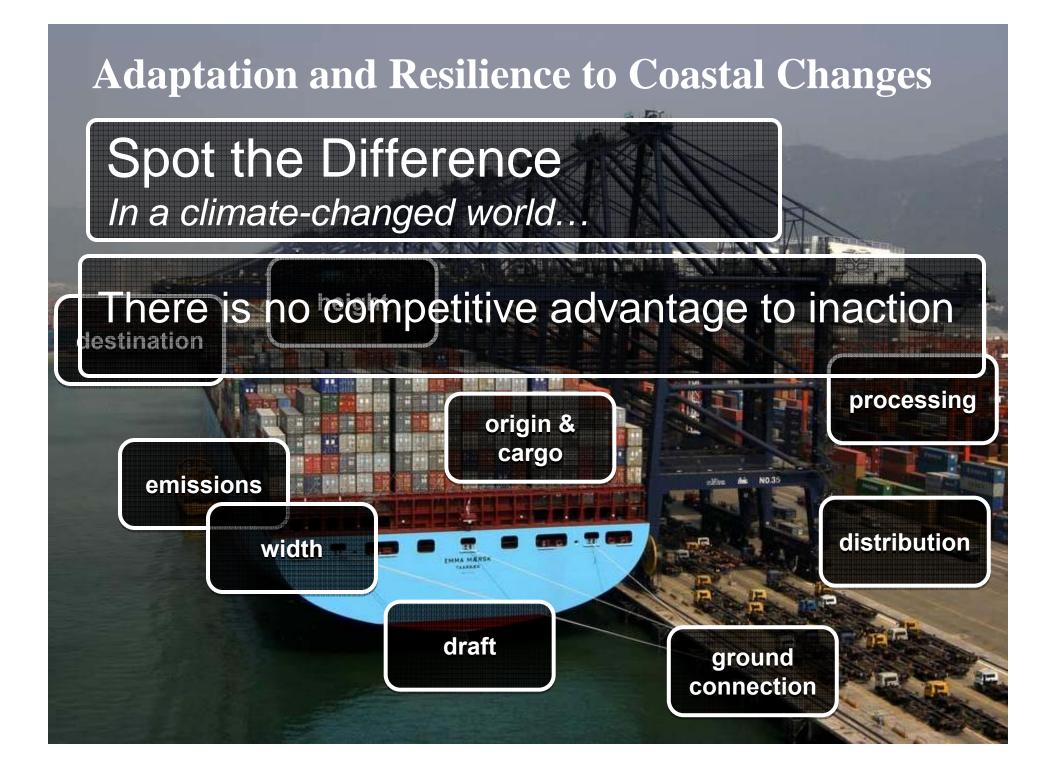
of change

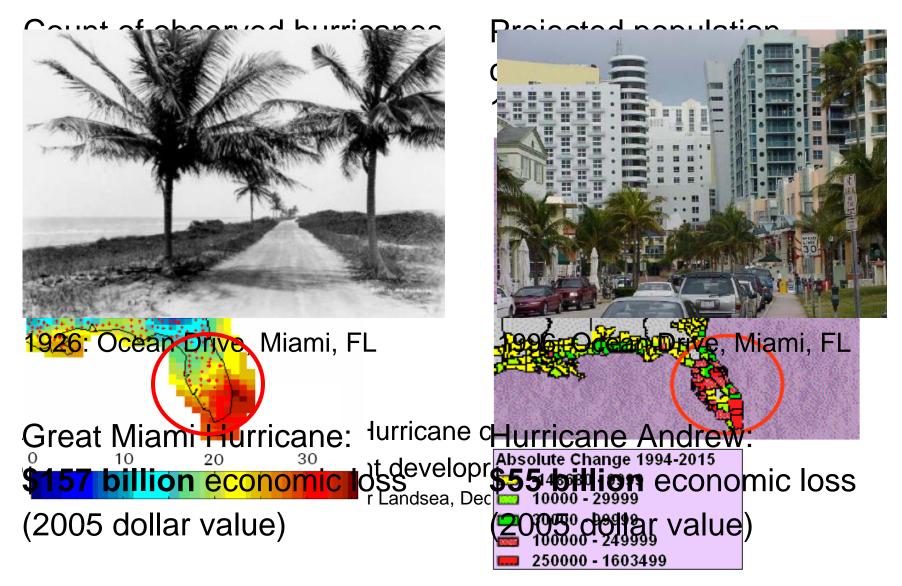
Slim City
World Economic Forum

www.driversofchange.com

http://www.driversofchange.com/docvis/slimcity/

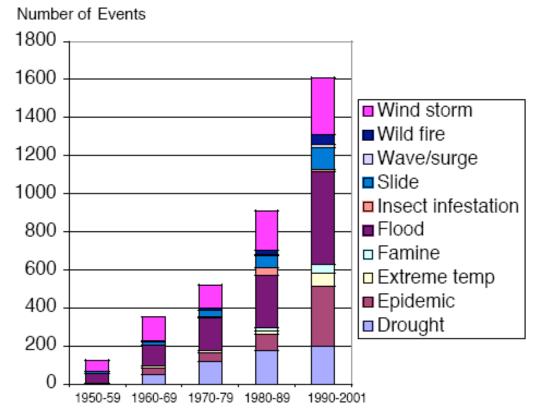
- Copenhagen Communiqué
- Technical Advisor to the C40 Large Cities Climate Leadership Group
- TED
- Plausible Futures




∆Climate

Implications for maritime

Increased Value Concentration: Increased Risk

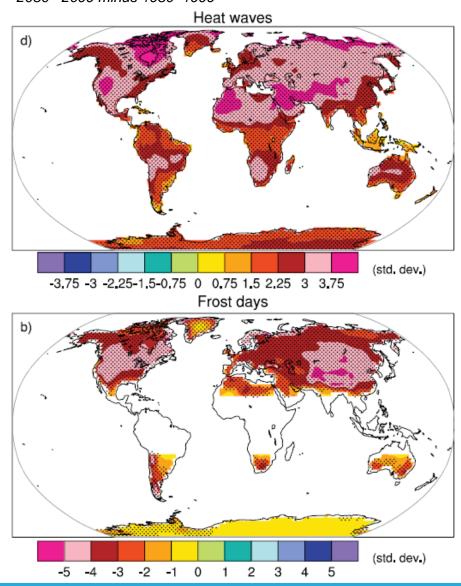


Increasing Risk

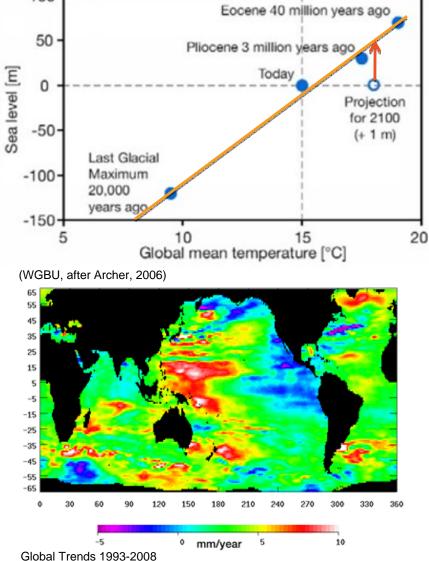
The frequency of extreme events is increasing.


With it, the nature and structure of those events are changing.

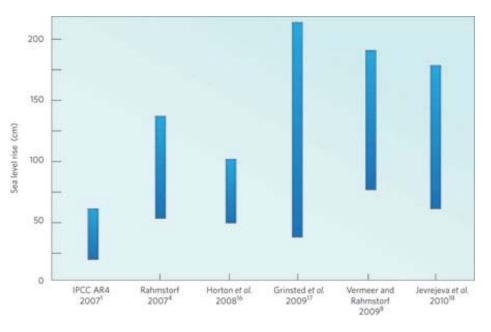
Changing nature and structure of events: 1950-2001

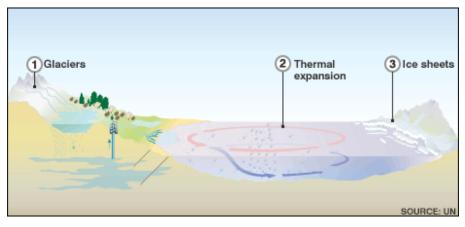


Observed



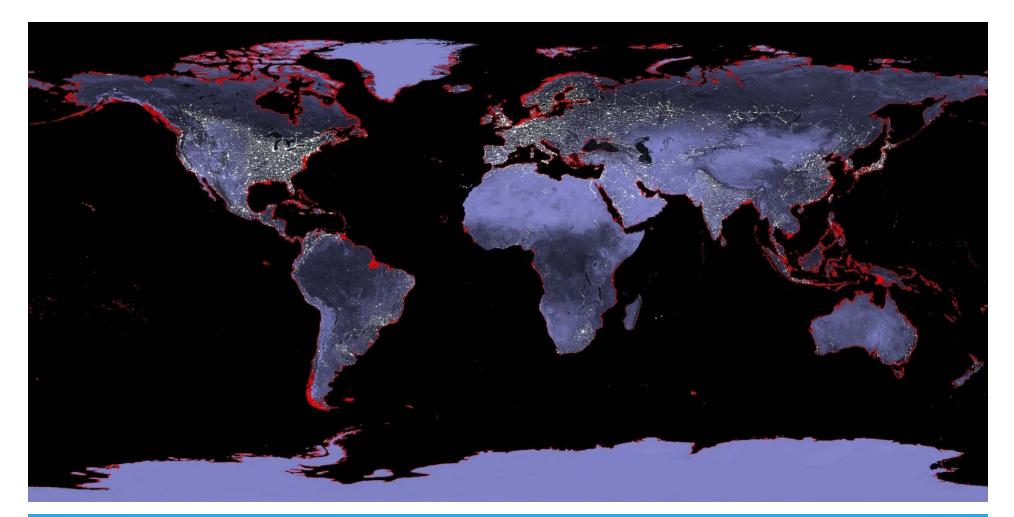
Predicted


2080–2099 minus 1980–1999



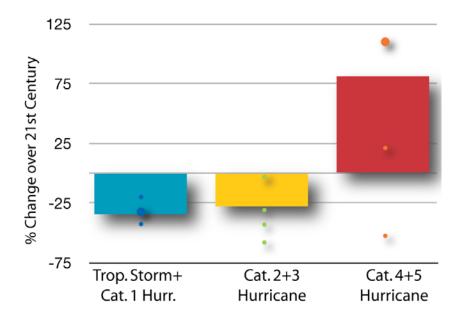
• Observed

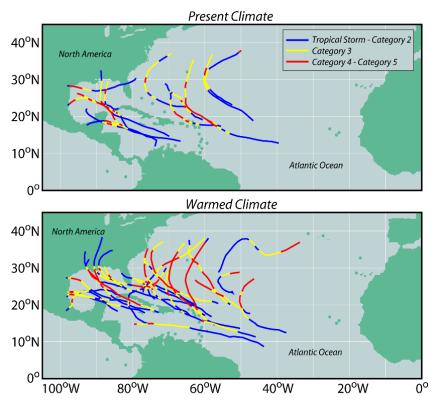
Predicted



SLR Mechanisms

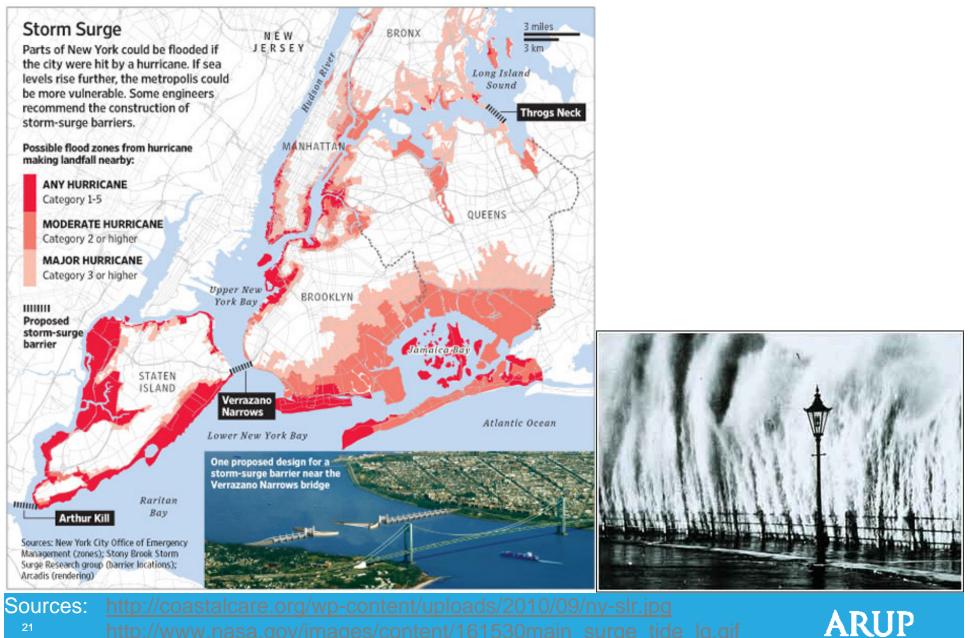
How does the science inform coastal zone infrastructure?


1-meter sea level rise



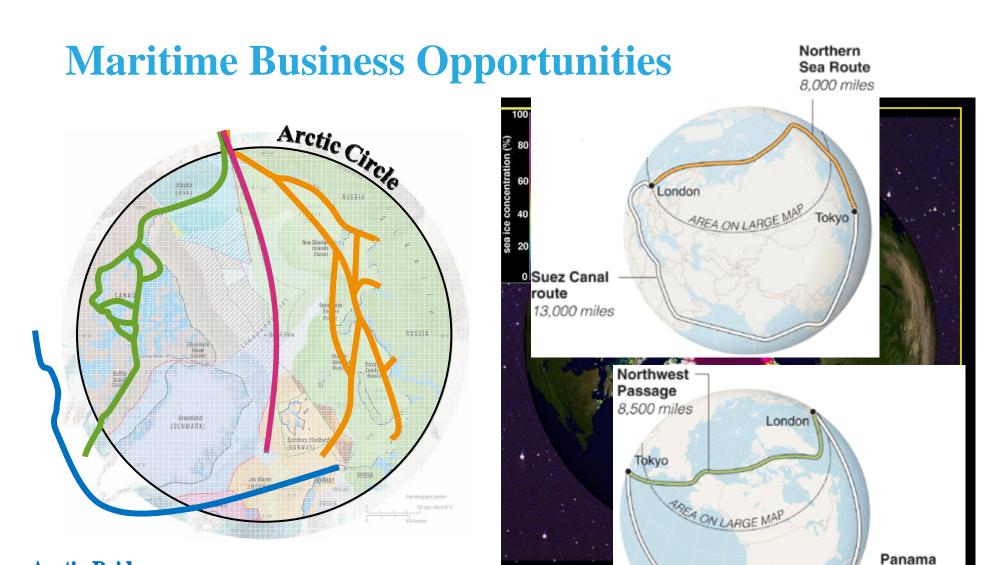
19 Source: NASA

Observed



Predicted

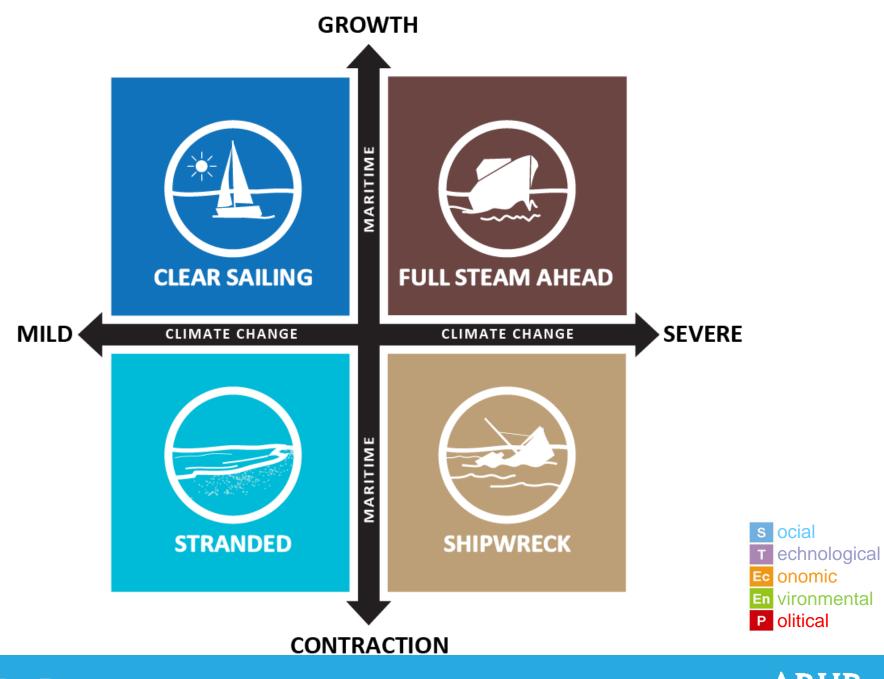
How does the science inform coastal zone infrastructure?



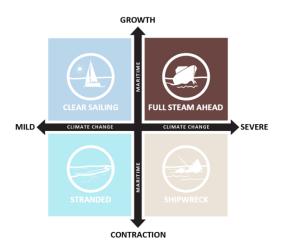
Extreme Event	Baseline (1971- 2000)	2020s	2050s	2080s
Flood heights associated with 1-in-10 yr flood (in feet)	6.3	6.5 to 6.8	7.0 to 7.3	7.4 to 8.2
Flood heights associated with 1-in-100 yr flood (in feet)	8.6	8.8 to 9.0	9.2 to 9.6	9.6 to 10.5
Flood heights associated with 1-in-500 yr flood (in feet)	10.7	10.9 to 11.2	11.4 to 11.7	11.8 to 12.6

²² 10 foot (3 meter) sea level rise. Source: NYC Panel on Climate Change

Arctic Bridge Northern Sea Route Northwest Passage Transpolar Route

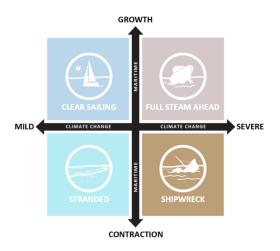

²³ http://www.nytimes.com/imagepages/2005/10/09/international/20051010_ARCTIC_GRAPHIC.html http://nsidc.org/seaice/characteristics/difference.html ARUP

Canal route 15,000 miles


4Futures

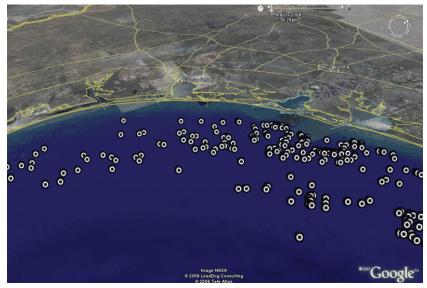
Plausible scenarios for global ports to 2050

Arctic passages open year-round

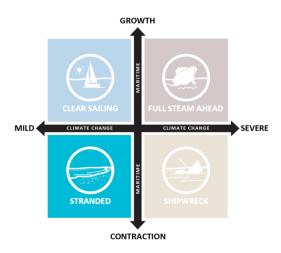


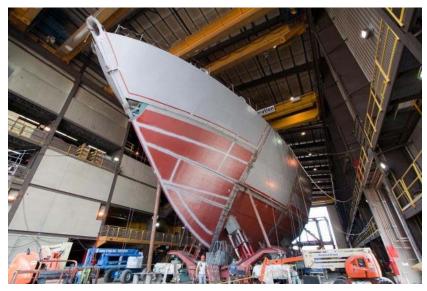
Increased reliance on engineered solutions

Infrastructure will become functionally obsolete before traditional design life



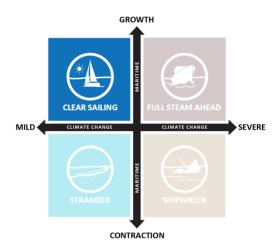
Increased focus on intermodal, land-based transportation hubs




Ports increasingly become unable to obtain insurance due to climate risks

Increased dependency on fossil fuel

High-efficiency ship design regulations and construction



Limited Arctic passage creates bottlenecks at Panama / Suez Canals

Extreme social pressure for environmental protection

Global and bilateral intergovernmental agreements, global price of carbon

Stricter environmental regulations for ports and shipping companies

Emergence of mega ports shifts trade power

Solutions

Pathways to Sustainable & Resilient Ports

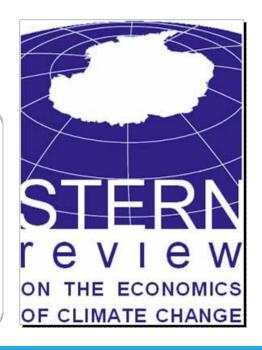
Climate Change mitigation and adaptation

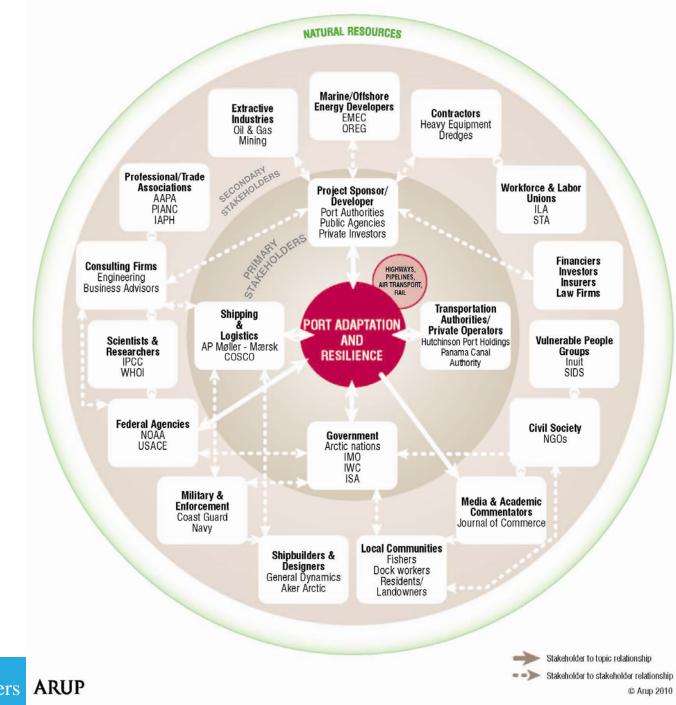
- Mitigation: proactively tackling the causes
 - Limited window of opportunity

Adaptation: reactively adjusting to the impacts

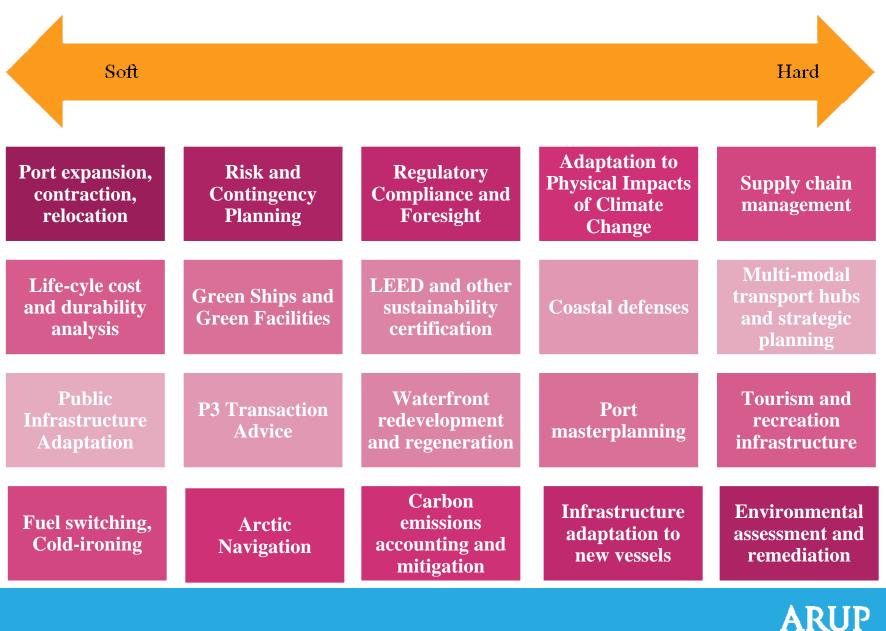
- Reducing vulnerability
- Finding opportunity
- Phasing

If we act today

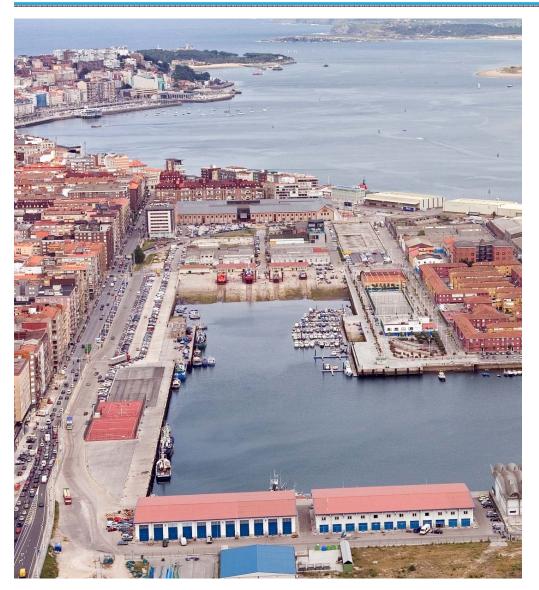

Cost


~1% global GDP each year

If we do nothing

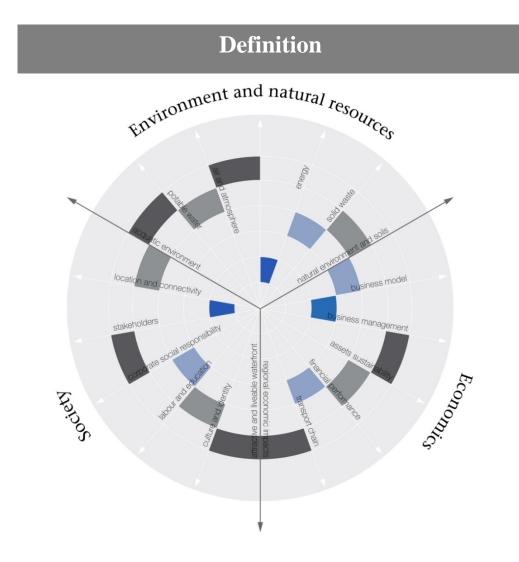

Like losing

 $\sim 5\% - 20\%$ global GDP each year, every year


Solutions for Maritime Stakeholders

Arup SuPort Tool: Appraising Port Sustainability

New situation: economical, social and of relationship with the environment New obligations and opportunities for the Ports Commitment to go beyond legislative compliance **Evaluation, Management and Implementation of Sustainability as** a Development Framework

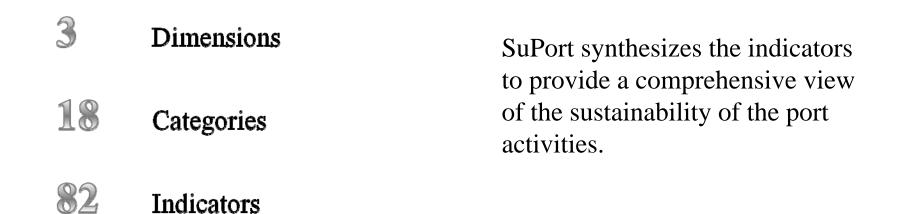


Arup and the Port of Santander in Spain reached an agreement to develop a tool to appraise a port sustainability: **SuPort**.

This initiative rose from a joint R&D project, which built upon the current activity of the Port of Santander to adapt this tool and test it on a real case.

SuPort has been developed with the input from experts on a wide range of areas of expertise: logistics, infrastructures, economics, social science, environment, etc.

SuPort is a sustainability evaluation and diagnosis tool for existing maritime transport related facilities:


•SuPort deals not only with environmental issues → it evaluates the sustainability triple bottom line (allocating weight to economic and social issues).

•SuPort is oriented to existing operations \rightarrow it provides a snapshot of their current or future performance in terms of sustainability.

• Provides a quick SWOT analysis by identifying strengths, weaknesses, opportunities and challenges

ARUP

	Categories	
ENVIRONMENT	SOCIETY	ECONOMICS
AQUATIC ENVIRONMENT	LOCATION AND CONNECTIVITY	BUSINESS MODEL
POTABLE WATER	STAKEHOLDERS	BUSINESS MANAGEMENT
AIR AND ATMOSPHERE	ATTRACTIVE AND LIVABLE WATERFRONT	ASSETS SUSTAINABILITY
ENERGY	CULTURE AND IDENTITY	FINANCIAL PERFORMANCE
SOLID WASTE	LABOUR AND EDUCATION	TRANSPORT CHAIN
NATURAL ENVIRONMENT AND SOILS	CORPORATE SOCIAL RESPONSIBILITY	REGIONAL ECONOMIC IMPACTS

Appraising Port Sustainability

Indicators

ENVIRONMENT AND NATURAL RESOURCES

N1 AQUATIC ENVIRONMENT

- N1.1
 Port water quality

 N1.2
 Hardscape and stormwater management

 N1.3
 Foul water management

 N1.4
 Flood risk management
- N1.5 Ship liquid waste management MARPOL I-II-IV

N2 POTABLE WATER

- N2.1 Potable water network efficiency
- N2.2 Potable water use
- N2.3 Use of non-potable water (grey, sea and storm water)

N3 AIR AND ATMOSPHERE

 N3.1
 Dust and air quality

 N3.2
 Greenhouse gases emissions reporting

 N3.3
 Noise

 N3.4
 Light Pollution

 N3.5
 Odours

 N3.6
 Ship air emissions – MARPOL VI

N4 ENERGY

N4.1	Energy efficiency of installations
N4.2	Lighting efficiency
N4.3	Renewable energy use
N4.4	Clean fuel supply (ships and port equipment)
N4.5	Onshore power supply

N5 SOLID WASTE

N5.1	Non-dangerous waste management
N5.2	Hazardous waste management
N5.3	Ship solid waste – MARPOL III - V

N6 LAND NATURAL ENVIRONMENT

N6.1	Contaminated soils
N6.2	Habitat restoration and protection and biodiversity management
N6.3	Plague control (ballast water and ship sediments)
N6.4	Dredging and land reclamation management
N6.5	Landscaping and visual impact
N6.6	Climate change provision

SOCIETY

S3

S1 PROXIMITY AND ACCESSIBILITY

S1.1	Accessibility (internal)
S1.2	Accessibility (external)
S1.3	Information accessibility
S1.4	Accessibility to the shoreline
S1.5	Citizen proximity to port industry activity

S2	STAKEHOLDERS
S2.1	Stakeholder relations
S2.2	Improved positive community
S2.3	Port community social contributions

CULTURE AND IDENTITY

S3.1	Social identity and heritage preservation

- S3.2 Social and economical interaction and diversityS3.3 Community relationship development
- S3.4 Cultural program
- soff Gartarat program

S4 LABOUR AND EDUCATION

- S4.1 Entrepreneurship and creativity (education)
- S4.2 Employment (quality and diversity issues)
- S4.3 Employee retention
- S4.4 Trade union relationships

S5 CORPORATE SOCIAL RESPONSABILITY

S5.1	Management Systems
S5.2	Internal and External Reporting

- S5.3 Supply Chain
- S5.4 Social Footprint

S6 ATTRACTIVENESS AND LIVABILITY

- S6.1 Amenities and services
- S6.2 Local environmental quality

S6.3 Health S6.4 Safety

- S6.5 Security and contengency plans (ISPS compliance)
- S6.6 Comfort
- S6.7 Walkable and open waterfront

ECONOMICS

E1	BUSINESS MODEL
E1.1	Workforce age
E1.2	R&D+I (investing on)
E1.3	Private investment
E1.4	Split of incomes sources
E1.5	Clients diversity

E2	BUSINESS MANAGEMENT
E2.1	Service quality / Performance audit results

- E2.2 Service delivery unit costs compared with peers
- E2.3 Quay utilization rate (congestion)
- E2.4 Storage area utilization rate
- E2.5 Land use

E3 ASSETS SUSTAINABILITY

- E3.1 Maintenance of assets
- E3.2 Asset flexibility
- E3.3 Ability to expand
- E3.4 New construction sustainability plan
- E3.5 Sustainable procurement and materials

E4 FINANCIAL PERFORMANCE

- E4.1 Debt service coverage ratio (DSCR)
- E4.2 Return on assets
- E4.3 Efficient pricing (road, parking, insurance, fuel, etc)

E5 TRANSPORT CHAIN E5.1 Sustainable traffic mix E5.2 Modal share sustainability E5.3 Inland transport external costs E5.4 the port as a total transport hub

E6	REGIONAL ECONOMIC IMPACTS
E6.1	Direct Employment
E6.2	Indirect Employment
E6.3	Contribution to the regional GDP
E6.4	Support for local industries
E6.5	Gross Added Value

ARUP

ENVIRONMENT AND NATURAL RESOURCES N1. Environmental quality

N3.1 Dust and air quality

Dust causes a threat not only to human health and the environment, but also to facilities maintenance due to its corrosive properties. The main source of air dust is bulk handling and storing. Other air pollutants may be generated by these activities (PM, COx, SOx, NOx, VOCs, heavy metals, etc). The port entity must limit the harmful effects of these substances by means of preventive measures. Besides, the port entity should control the pollutant capacity of ships at berth.

Measurement

Value	
3	There is an air quality management plan put in place, which deals with both dust and air pollutants emissions. As part of this plan, preventive active measures are taken such as providing systems to prevent pollutants dispersion during the loading or unloading of vessels (such as covered conveyor belts) or covering stacking areas, and providing them with special systems to catch dust in each transfer point. The port entity checks the Environmental Ship Index (ESI) of incoming ships.
0	National/Local air emissions regulations are met (European Ambient Air Quality Directive 1999/EC/30 or equivalent). The port entity has never received a fine/complaint regarding dust/air contamination issues. Ships berthing into the port entity comply with Marpol convention Annex VI.
-3	National/Local air emissions regulations are not met on a regular basis. The port entity has received a fine/complaint regarding dust/air contamination issues, and no action was taken. Ships berthing into the port entity do not comply with Marpol convention Annex VI.

Questions

- Has the port entity got an air quality management plan? If so, what does in include?
- What measures is the port entity implementing in order to avoid air quality issues?
- Has the port entity ever received community complaints for low air quality? If so, has any action been taken?
- Has the port entity ever received fines for not complying with national/local air quality regulations? If so, has any action been taken?
- Are the incoming ships checked by the port entity in terms of its air quality perfomance? (i.e. compliance with Marpol convention Annex VI, ESI)

References	Correlation to other indicators					
 Marpol convention Annex VI: Prevention of Air Pollution from Ships. Entry into force: 19 May 2005 IAPH tool box for port clean air programs (iaphtoolbox.wpci.nl) http://www.porttechnology.org/fa_terminal_handling/ Environmentally-friendly-dust-control-solutions/4471.html http://www.australiandustcontrol.com.au/ 	 BREEAM - Europe Industrial: Pol4 ESPO - Environmental Code of Practice: Issue 7 (Port area) EPA Strategy for sustainable ports: Emissions Reduction Actions 4.A - 4.C Green Port Guidelines: EM2 (Spain) Indaport: Indicator #1 SPeAR: air quality indicators Santader: C51, P44, P39 					

Notes

Picture source: Arup photo library

According to ESPO, air quality is the second most important environmental consideration for European ports (first one for large ports handling >25 million tons). Dust takes up the eight positions on the same ranking.

ARUP

SuPort

SOCIETY S1 Location and Connectivity

S1.5 Citizen proximity to port industrial activity

The proximity of the urban cities to the waterfront area defines the linkages of these with the sea, benefiting from the economic advantages that imply a privileged geographical location at the time of receiving and shipping goods by sea. Port facilities have been enriching the cities, but sometimes make it hard to enjoy the coast due to industrial port activity. Given this, new initiatives have foreseen displacement of the main port activities to areas more distant with less interference with daily life and neighborhoods.

Land previously suitable for use of operations of port industrial activities has become unusable (due to restrinctions in legislation) presenting an excellent opportunity to introduce new attractors in areas of high centrality, related to landscape and shoreline.

Measure	ement
Value	
3	All the industrial port activity is far from the urban areas. There are no complaints from neighborhoods to Port Entity due to ongoing of industrial activitied.
0	In compliance with current legislation related with Environmental Impact Assessment of Industrial Activities and itsviability of being closer or not to urban areas.
-3	Industrial port activity is close from urban areas and neighborhoods. There are complaints from stakeholders because of the ongoing activities.

Questions

- How many people live nearby and are affected by industrial port activities?
- How far is the industrial port area to the neighbors?
- Is there any complaint by the proximity of port activity?

References	Correlation to other indicators
 Environmental Impact Assessment The WHO European Healthy Cities Network Urban Planning Lows Sustainable port and urban planning 	 SPeAR; Transport (Ec), Transport (En), Form and Space LEED-ND; NPDc11

Notes

http://www.bahiadialghero.it/public/images/org/alghero/panorami-125.jpg

SuPort: How does it work?

Values: each indicator will have a value between -3 and +3.

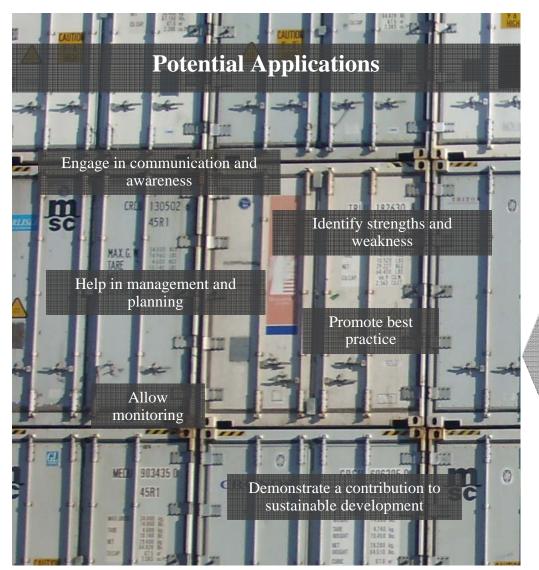
	Category/Indicator	Values 3 2 1 0 -1 -2 -3	V	Veights	Scores		
N1	AQUATIC ENVIRONMENT					+ 3	Best practice
N1.1	Port water quality		1	12.5%	0.38		
N1.2	Hardscape and stormwater management		1	12.5%	0.25	0	In compliance with current legislation
N1.3	Foul water management		1	12.5%	-0.13		In compliance with current legislation
N1.4	Flood risk management		3	37.5%	0.75		
N1.5	Ship liquid waste management - Marpol I-II-IV		2	25.0%	0.00	- 3	Worst practice
				100.0%	1.25		1

Weight: each indicator will have a weight, which will enable the particularisation of the tool for each application.

	Category/Indicator	Values 3 2 1 0 -1 -2 -	Weights	Scores	
N1	AQUATIC ENVIRONMENT				
N1.1	Port water quality		1 12.5%	0.38	
N1.2	Hardscape and stormwater management		1 12.5%	0.25	
N1.3	Foul water management		1 12.5%	-0.13	
N1.4	Flood risk management		3 37.5%	0.75	
N1.5	Ship liquid waste management - Marpol I-II-IV		2 25.0%	0.00	
			100.0%	1.25	

In this example, indicator N1.4 represents the most critical issue. Indicators N1.1, N1.2 and N1.3 are the relatively least important

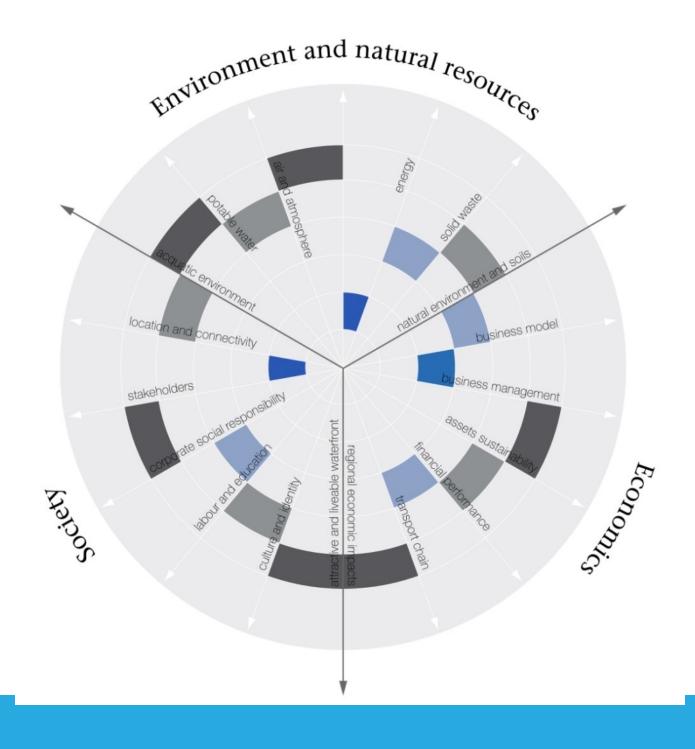
SuPort: How does it work?


✓ Scores:

	Category/Indicator	2	2	Valu	ues	2	2	Veighs	Scores	
N1	ENVIRONMENTAL QUALITY	3	2		-	-2 -	-5			
N1.1	Port sea/river water quality						1	12.5%	0.38	Indicator score = Value x Weigh(%)
N1.2	Air quality						1	12.5%	0.25	
N1.3	Noise						1	12.5%	-0.13	Example. 5 x 12.5% = 0.50
N1.4	Light pollution (impact on land and water)						3	37.5%	0.75	
N1.5	Odour						2	25.0%	0.00	Category score = ∑Indicators score
								100.0%		Z

 Accordingly, SuPort has flexibility enough to add a weight to the Categories within a Dimension

Dim	ension/Category	[3,2.5]	(2.5,1.5] (1.	Value 5,0.5) (0.5,-0	(-0.5,-	(-1.5,- 2.5] (-2.5,-	Weij -3]	ghs	Scores	
	IRONMENT & NATURAL									The scheme of application is the same:
N1	ENVIRONMENTAL QUALITY		1	1.25			1 1	1%	0.14	
N2	ENVIRONMENTAL IMPACT			-0.25			2 2	22%	-0.06	Score for each Dimension is the
N3	ENERGY AND ATMOSPHERE			0.25			1 1	11%	0.03	aggregate of the word up seeres of its
N4	WASTEMANAGEMENT	3.00					3 3	33%	1.00	aggregate of the weigh-up scores of its
N5	WATERUSE			0.14			1 1	11%	0.02	cotogorios
N6	ENVIRONMENTAL MANAGEMENT					-2.20	1 1	11%	-0.24	categories
							1	00%	0.88	



SuPort provides a framework which enables ports and terminals operators and maritime facility owners to:

- Analyse their current performance
- Identify areas for improvement
- Go beyond detached solutions to isolated problems in order to provide a strategic integrated solution.
- Evaluate how the performance would be if the actions were taken successfully.

Questions

Craig.Covil@arup.com

+1-212-897-1361

Thank You

Land based facilities:

- •Refrigeration storage
- •Admin & offices
- •Energy storage / supply
- •Cold ironing
- •LNG facilities
- •Data Centers
- •Maintenance facilities
- •Dry/wet docks
- •Tug Facilities
- •Laboratories

CapEx vs OpEx Holistic Integrated whole system approach ARUP