

your global specialist

The Case for Environmentally Acceptable Lubricants: Reducing Operational Discharges of Lubricants into Oceans and other Water Bodies

Green Boats and Ports for Blue Waters III Workshop

Benjamin Bryant – North American Marine Market Manager

Content

• Introduction

/ Slide 2

- Environmentally Acceptable Lubricants (EALs)
- Why should we use environmentally acceptable lubricants?
- 2013 Vessel General Permit (VGP) Update
- How to select the right EAL?
- Ports Should they require EALs?

Environmentally Acceptable Lubricants

United States Environmental Protection Agency Office of Wastewater Management Washington, DC 20460

Environmentally Acceptable Lubricants

- 'Environmentally Acceptable Lubricants' means lubricants that are 'biodegradable' and 'minimally-toxic' and are 'not bio accumulative'
- Environmentally Acceptable Lubricants include those labeled by the following labeling programs:
 - Blue Angel
 - European Ecolabel
 - Nordic Swan
 - the Swedish Standards SS 155434 and 155470
 - Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR) requirements
 - EPA's Design for the Environment (DfE)

Lubricant base oil	Base oil source	Biodegradation	Potential for Bioaccumulation	Toxicity
Mineral oil	Petroleum	Persistent / Inherently	Yes	High
Polyalkylene glycols (PAG)	Petroleum - synthesized hydrocarbon	Readily	No	Low ^a
Synthetic Ester	Synthesized from biological sources	Readily	No	Low
Vegetable Oils	Naturally occurring vegetable oils	Readily	No	Low

Source: Mudge, 2010

a. Solubility may increase the toxicity of some PAGs

Differences between standard lubricants and EALs Example – stern tube and thruster gear oil oils

Properties	Mineral oil	Ester oil Native or synthetic
Rapidly biodegradable according to OECD 301 B	≤ 20% _	≤ 90% ++
Wear protection	0	+
Friction coefficient	0	++
Ageing resistance	0	+
Viscosity-temperature behavior	0	+
Water in oil	+	-
Seal compatibility	++	 with NBR ++ with selected FKM
Hydrolytic stability	Not relevant	+
Lifetime	1	3 – 4 (no water)

++....very good +....good o....satisfactory -....poor

Why should we use environmentally friendly lubricants?

Why should we use environmentally friendly lubricants?

- Several million liters of petroleum lubricants leaked annually into our rivers and oceans from operational discharges (Etkin, 2010)
- Oil leakage rate through a new propeller shaft seal can be as high as 5 I / day.
- Leakage rates of older seals could be even higher.

Motivation for vessel owners and operators

Mandatory by law in the US

/ Slide 8

 Requested by the 2013 Vessel General Permit Vessel (VGP) vessels larger than 79 feet must use Environmentally Acceptable Lubricants (EALs) in all water-to-sea interfaces when entering waters of the United States

Other - Polar Code

 Non-toxic biodegradable lubricants or waterbased systems should be considered in lubricated components located outside the underwater hull with direct seawater interfaces, like shaft seals and slewing seals.

Local laws, customs and preferences

 High demand for environmentally friendly operation of ships from customers, e.g. cruise passengers

2013 Vessel General Permit – game changing regulation

- Result of the Clean Water Act (mid 1970's) and environmental law suit 2008 in the United States
- Requires Environmentally Acceptable Lubricants (EALs) in all oil-to-sea interfaces
- Focus is on reducing "Operational discharges and leakages"
- 1st version in 2009, updated in 2013, next version in 2018

Case Study - ATB units

/ Slide 10

Lost in use grease

- More than 150 vessels are operating in US Waters
- 200 tons of grease annually
- More than 50% discharged into waters

How to select the right EAL? Example – stern tube fluid

/ Slide 11

systems							
Company name	Viscosity cSt. 40°C	Appli- cation	Company name	Viscosity	Appli- cation		
Product name			Product name	d0°C			
BP / Castrol			Klüberbio RM 2-100	100	s		
BioStat 68 *	68	м	Klüberbio RM 2-150	150	S		
BioStat 100 *	100	м	Klüberbio LR9-68	68	н		
Chevron			MAN Diesel & Turbo SE				
Clarity Synthetic EA Hydraulic Oil 68	68	н	PrimeServLube Bio P 1000 **	100	s		
Clarity Synthetic EA Stern Tube Oil 100	100	s	TOTAL LUBMARINE (ex Elf Marine)				
Clarity Synthetic EA Gear Oil 100*	100	G	Bioneptan 100 100		S		
Clarity Synthetic EA Gear Oil 150*	150	G	TOTAL INDUSTRIE				
ExxonMobil			Biohydran TMP 100	100	н		
Mobil SHC Aware ST 100 **	100	S	Terresolve / RSC Bio Solutions				
Mobil SHC Aware ST 220 **	220	S	EnviroLogic 3068	68	н		
Fuchs / Lukoil			EnviroLogic 3100	100	н		

All listed EALs can be used for oil lubricated SIMPLEX sterntube bushes and seal systems.

* Oils with general limited application temperature, 60° C

** Oils not suitable for SIMPLEX Airspace seals.

Plantogear 100 S

Klüber

Gulf Oil Marine Ltd.

Klüberbio EG 2-100

Klüberbio EG 2-150

GulfSea BD Sterntube Oil 68 **

GulfSea BD Sterntube Oil 100 **

Oil application: G =Gear, H = Hydraulic, M = Multipurpose, S = Sterntube

100

68

100

100

150

м

s

S

G

G

EnviroLogic 210 *

EnviroLogic 215 *

Vickers Leeds

Hvdrox Bio 68 **

Hydrox Bio 100 **

Hvdrox Bio 220 **

100

150

68

100

220

G

G

s

s

S

Lube chart from SKF Blohm + Voss for SIMPLEX stern tube seals

- EAL approval list from propeller seal OEM
- Several stern tube oils are approved
- No ranking in regards to performance is given by OEMs

There are huge differences in performance of different EALs :

- Oil film thickness in a bearing
- Shear stability of the oil
- Oxidation stability
- Emulsifying or non-emulsifying oil
- Can water be removed from the oil and how

Viscosity Shear Stability Test CEC L-45-A-99 Test results

Product	Running time; [h]	V 40 [mm²/ s]	Change [%]
Klüberbio EG 2-100	0	97.4	-
	20	97.2	-0.2
	100	96.7	-0.7
Klüberbio RM 2-100	0	99.9	-
	20	99.5	0.8
	100	96.7	0.3
Competitor A	0	99.8	-
	20	70.4	-29.4
	100	68.0	-31.9
Competitor B	0	106.1	-
	20	63.5	-40.1
	100	48.3	-54.5
Competitor C	0	105.0	-
	20	57.6	-45.1
	100	40.7	-61.2

These values are results from one-time measurement and serve for information only. No assurance of values/properties of the series-produced product. They are not part of the specification and can not be used for.

Decrease of kin. viscosity @ 40°C

EAL Results to Date

/ Slide 13

- The VGP went into effect 12/13
- Some exemptions available
- Vessels covered by the permit must submit an annual report to the EPA
- 41,980 reports submitted in 2015
- 9,313 reported oil to sea interfaces
 - 18,270 applications
 - 9,949 using EALs
 - Global impact on vessels trading in US waters
 - EALs are successfully protecting marine equipment

•

Ports – Should they require EALs?

/ Slide 14

- Oil and grease discharge limits are specified in NPDES permits and are generally included in SWPPP.
- Sources of oil and grease include wire rope, chains, wheel axles, engines (non-point pollution)
- Limits in storm water runoff 10 15 mg/l per day (not including accidental spills)
- 360 ocean and river ports in the US
- Green Port initiatives to date do not require EALs
- Many applications could be effectively changed over.

EALs – Protect marine equipment and the environment

