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Digital images were collected
using an Imetrix 9100 electronic
still camera mounted on Jason.
This mosaic contains 139 images
collected during 8 vertical

traverses at a rise rate of 2cm/sec.
The sulfide pinnacles host diverse
macrofaunal and microbial
communities supported by diffusely
venting fluids that engulf many of
the structures. Three sites of
vigorous venting emit fluids at
temperatures of 305°C.
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Overview:

e Taking clean samples

* Measuring in situ activities

* Maintaining in situ conditions

* CORKs and seafloor observatories
* Biomarkers

* Core repositories



Limiting Contamination (seafloor)

Slurp sampling microbial mats at the
Mid-Cayman Rise using ROV Jason
* highly precise sampling

isolates samples from seawater
during ascent

Photo courtesy of Chris
German/WHOI/NSF, NASA/ROV Jason

2012, © Woods Hole Oceanographic
Institution

Bio-box used with ROV Tiburon at
Davidson Seamount

* can accommodate larger samples
(e.g., animals, rocks)

can prevent cross-contamination

and limit seawater infiltration
Image courtesy of Davidson durlng ascent

Seamount Exploration 2002,
NOAA/OER.




Limiting Contamination (subseafloor)

Try to maintain sample integrity

* High core recovery or large sample
sizes

* Preserving stratification and/or
important intervals

* Slowing infiltration into the sample
interior

F"

Sediment long corer deployed from the R/V Neil Armstrong in the Puerto Rico Trench to a
depth of 8,385 meters
Photo courtesy of Woods Hole Oceanographic Institution

Encapsulate cores in liners.

Manage the composition of drilling muds

e Limits exposure of cores to 02, seawater,
and other organisms

* Stabilizers used in drilling muds can
stimulate microbial growth, so pro’s and
con’s of drilling fluid (if needed) should be
considered

Core recovery during Antarctic drilling, Exp382
https://joidesresolution.org/core-on-deck-14/



Measuring Contamination

Injection of PFC tracers during drilling
operations

* tracks proliferation of chemicals into the
sample matrix

e Can be removed by volatilization

* (If you aren’t careful, it can get everywhere)

BP 528/38 nm BP 617/73 nm
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] JuckAEM2005
Fluorescent microspheres

* Cell-sized particles (~ 1 um)
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oreuttsciprilling2017 ~ *  Hard to control delivery

Distinct fluorescence spectra
Morono/SMEJ2009
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Exploring deep microbial life in
coal-bearing sediment down to
~2.5 km below the ocean floor
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Biochemical, geochemical,
and sequence-based evidence
of life deep within the
seafloor

Importantly, applied multiple,
independent lines of inquiry to
address the limits of the
biosphere and to understand
the mechanisms



X357 used Seabed Rock Drills for the first time in IODP

The drill head provides the rotati-
on (400 revolutions per minute)
and necessary torque for drilling. It
also screws and unscrews the pipe
joints to build and break down the

drill string in the borehole.
On board the ship, the required pipes

are loaded into the two rotating
magazines. During operation, after
they are retrieved, the drilled core
segments are then returned to the
magazines.

Aloading arm transports the drill
pipe from the magazine to the mast,
where it is screwed onto the drill
head. The lengths of dismantled drill
string from the borehole and the
filled tubes are placed back into the
magazine.

Two rock drills to be used:
e MeBO from MARUM
e RD2 from BGS

The four movable legs, with
their plate-like supporting feet, provide
stability on the sea floor. They can be indivi-
dually adjusted to achieve a vertical position for the
MeBo.

Drawing: Andreas Dibiasi
dibi Muitimedia



Measuring In situ Microbial Activities

Injection of tracers
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FIG 3 Taxonomic classification of 165 rRNA reads {A) and functionally (KO) annotated non-rRNA transcripts (B) from RNA-SIP metatranscriptomes.
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FIG 1 Incubator setup for the in situ RNA stable isotope probing (RNA-SIP) experiments. Each of the four

incubation chambers was heated to a chosen set point temperature. Fluid was pulled into the insulated

incubation chamber from the manifold of the hydrothermal fluid and particle sampler (HFPS) through a custom « .

titanium shutoff valve, pulling hydrogen gas and buffering acid into the chamber as it filled. (A) After the ACthlty arreStEd by:
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Measuring In situ Microbial Activities

Mass spectrometry at the seafloor 09
" 2 2 &5 22 F &
| i
am
Tethered
CTD rosette 7% L : 103 ’] »
Towfist Wingll;line = | ] n{” m r H\
Pun.ll;:)-.‘ (‘ r/ =
- profiler s |
‘g n I | F (ﬂ
AUV £ IM i~ o [ R

A i “

Manngd & / CH,

submersible Cabled
observatory | '|
M Al

' LMl -
| |
ChuaFrontMarSci2016 n | ' ” ‘ \
" 1

* Deployable from a number of different platforms i e was 200 22

Dive time GMT (dive no. 4418 Mothra vent field)

* Can be used to measure (bio) geochemical concentrations _
WankelNatGeosci2011

and fluxes



Cross-section of a black smoker chimney from Juan de Fuca Ridge

2°C seawater




Maintaining In situ Conditions

1) Sampling

Deep-sea vehicles

4) Microbiology techniques
’ Ambient pressure techniques
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Enrichments and incubation
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Locking device
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High pressure valve
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Connection valve
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Sediment transfer
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Sediment transfer unit

Charging valve

FIGURE 1
Structure scheme of the sediment sampler.
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CORK Borehole Observatories

s }jg;sﬁmi wene Ry difficult to obtain intact
I i samples from the fractured
| g T regions below the seafloor
i * Installation of CORK observatories
§ to directly sample the subseafloor
aquifer
Pack o Screens Fluid flow SW  CORK observatories at North Pond, western flank of Mid-Atlantic Ridge  NE
g = o i Jason ROVwin: OGRS U13838
% e = som I soi T [ ﬁ fom
et = rocs - o
-Downhole sampler : 330m > Samplers

EdwardsNatRevMicro2011

* Enable time-series sampling as well as
experimentation on the seafloor
* Can be retro-fitted to existing boreholes




Cabled Seafloor Observatories
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Rapid response time

Data feeds back to
shore

Power supply and
docking capabilities

Plate scale processes

(Photo credit: ACO, Lu ‘ukai/ UH)




Biomarkers
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Consider both the living and
fossil record or organisms in the
seafloor

* Intact Polar Lipids, PLFA and
lipid biomarkers

*  Other metabolites?

Z

Viable cells = DNA

B

DNA bound

Dead cells
to particles

%‘\Jg‘ o

Stable isotope signatures
* eDNA and sedaDNA

Fig. 2. Composition of the microbial pool in aquatic sediments. The different sources of microbial cells (from external sources, the water column,
and the sediments) are depicted with cells with different shapes and colours {see caption in the bottom left part of the figure). The different forms
of microbial cells and DNA that can be found in deep sediments are shown at the bottom right part of the figure.
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of functional groups of a the seasonal sea-ice ecosystem, which

change after ial sea-ice loss. Repr

prevailed for most of the late glacial and b the ice-free ecosystem, which dominated during the Holocene.
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Legacy mbio samples stored at -80 C

Ultra clean sample curation and processing facilities

Clean rooms inside of clean rooms with laminar flow

UV irradiation, static elimination, decontamination solutions,
and plenty of blanks

Cooled stage diamond saws for subsampling materials



Thank you!




