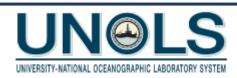
Abstract:

Over the last year, a group of like-minded marine technicians, scientists, and data managers have worked on an initiative to develop best practices related to sea-going operations on research vessels. The goal of each working group is to develop a best practice document that will ultimately result in standardized operational practices and improved data quality throughout the Academic Research Fleet. During this breakout session each active working group (EK-80, General Underway Systems, and CTD) will provide details regarding their status, share draft documentation, and request feedback from the community on the current content. Kristin Beem (OSU) and Rebecca Hudak (WHOI) will share the results of technician training cruises focused on both pier side and "underway" EK-80 calibrations on the R/V Atlantis and R/V Sikuliag and provide a summary of the metrics for choosing an adequate calibration site. Shawn Smith (R2R, FSU, SAMOS) will provide an overview on the status of the general underway best practices working group, proposed contents and encourage community input on other content of community interest. Laura Stolp (WHOI) and Rebecca Hudak (WHOI) will introduce the session attendees to the CTD tiers, cleaning documentation, instrument list for deriving psa, decision trees, and cleaning recommendations. Leah McRaven will close out this session with a presentation on CTD Data: From Raw Collection to Science Use. This presentation will provide an overview of why this data is important, anticipated sensor accuracies and drifts, how to visualize anticipated accuracies, and how to visualize CTD contamination during acquisition.

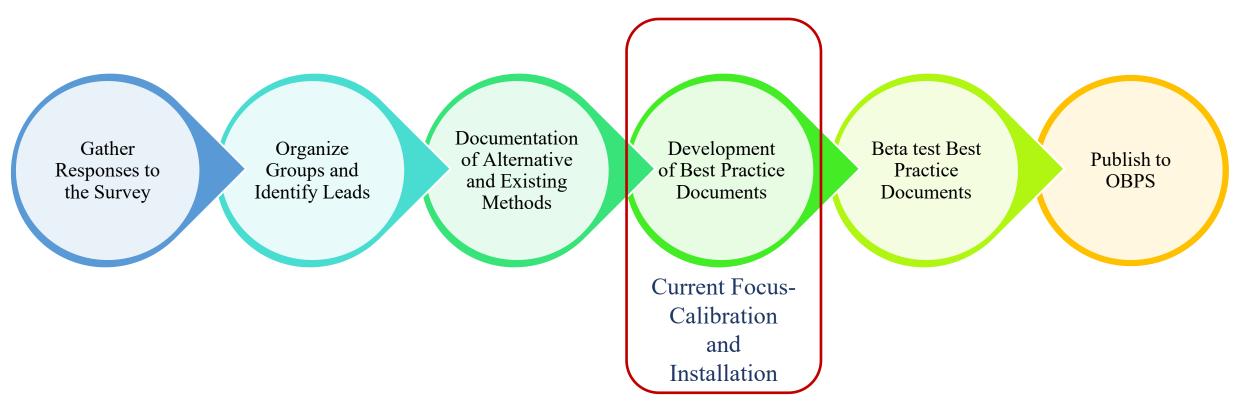
An update on: Developing EK80 Best Practices

RVTEC 2022 November 2, 2022

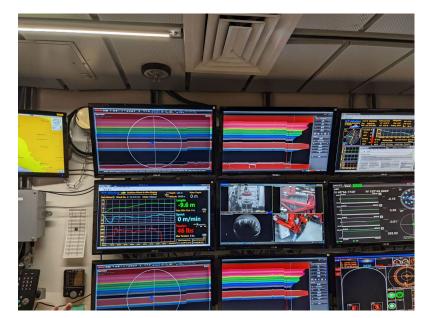

EK80 Working Leads & Working Groups Members

Rebecca Hudak Rolling Deck to Repository Woods Hole Oceanographic Institute Shipboard Scientific Support Group

Kristin Beem UNOLS Tech Training Committee RCRV Marine Science Technical Director Alexa Gonzalez: NOAA Kristin Sojka: NOAA Lynne Butler: URI Peter Shanks: Australian Antarctic Division Adrianne Copeland: NOAA/FFO Mike Jech: NOAA Jennifer Johnson: WHOI/AOPE Shannon Hoy: NOAA/ OER Andone Lavery: WHOI Beth Phillips: NOAA Liz Weidner: UNH/CCOM

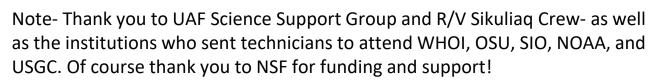


Our Approach



- Monthly Meetings Third Thursdays @ 1300 ET
- Took a brief break during active sailing season
- About 13 active members contributing; including those from NOAA, UNH, OSU, URI, and WHOI
- R/V Atlantis EK80 first calibration Winter 2022 BP Group Members guided and assisted in calibration
- R/V Sikuliaq Calibration Cruise in February 2022 and EK80 attended calibration learned about Sikuliaq protocols and setup.
- Ocean Best Practice Document Strong focus on calibrating an EK80 as well as what features should be running to get the best data

R/V Sikuilaq Displays during EK80 Calibration



RVTEC Community Items of Interests

- Setups for NOAA (used on the R/V Atlantis) and the R/V Sikuliaq-Automated Rigging Systems Price is around \$11-15K but it's much quicker and "easier" - Calibration will still take 6-8 hours minimum
- Map of Calibration Spots- What makes a good Calibration Site?
 (deep pier facility- if available, low flow rate/ slack tide, low target counts, 50+ meter water depth, during daylight, etc.)

UAF Technicians Rigging up the Calibration Spheres

Questions/Interested?

Get involved!

- Reach out to the lead of the working group you are interested in joining
 EK-80: Rebecca Hudak <u>rhudak@whoi.edu</u>, Kristin Beem: <u>kristin.beem@oregonstate.edu</u>
- Oceans Best Practices Website (where final BP document will live): <u>https://www.oceanbestpractices.org/</u>
- Ocean Mapping Wiki- Great Resource- collaborative website includes EK80 Information! Shannon Hoy- one of the wiki leads <u>https://github.com/oceanmapping/community/wiki</u>

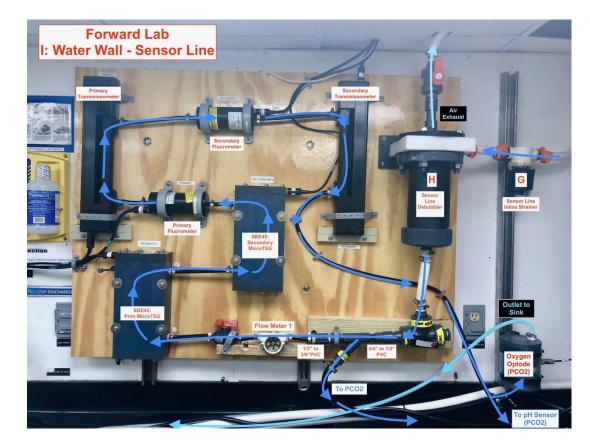
An update on: General Flow-through Systems

RVTEC 2022 November 2, 2022

Group Members & Working Group Leads

Shawn Smith Rolling Deck to Repository SAMOS Initiative COAPS, Florida State University

Shawn Smith: R2R/FSU Laura Stolp: WHOI Rebecca Hudak: WHOI Kristin Beem: OSU/RCRV Katie Watkins-Brandt: NOAA Gabe Matthias: URI Emily Shimada: Oregon State Kate Kouba: Oregon State John Ballard: UCSD Sara Rivero-Calle: UGA Suzanne H. O'Hara: LDEO/R2R Morgan Hudgins: UGA Jeremy Taylor: NOAA/JIMAR Lynne Butler: URI Peter Shanks: Australian Antarctic Division Webb Pinner: Capable Solutions Taylor Crockford: WHOI Michael Tepper-Rasmussen: Oregon State



Scope

Sept. 2021 (last) meeting focused on key components

- Intake
- Seachest
- Pipes, valves, and tubing
- Pumps
- Flow meters
- Debubblers
- Sensors

Atlantic Explorer Water Wall

Discussion topics from WG

- Intake
 - How to document location and which intake is in use?
- Cleaning methods, frequency for Seachest and other system components
- Pumps
 - o Impeller vs diaphragm?
 - Which are in use?

- Flow meters
 - How many needed and where?
- Debubblers
 - Sizing, cleaning, etc.
 - What sensors are sensitive to bubbles?
- Sensors
 - Recommend "order" of sensors along flow path

Logging Events for Harvest in NRT

Could event logs (R2R, ship tech, etc) be leveraged to track flow-through system events that may impact data quality

List Find Help												
Instrument:	Underway Science	seawater										
Summary Threade	d								[J Author	v Und	lerway Science seawater v Action v 6 Entries
Event	dateTimeUTC	GPS_Time	Instrument	Action	Transect	Station	Cast	Latitude	Longitude	Seafloor	Author	Comment
20220927.1038.002	20220927.1038	2022/09/27 10:38:46	Underway Science seawater	service	NaN	NaN	NaN	64.171087	-51.719479		eCheung1	Freshwater flush
20220930.1314.001	20220930.1314	2022/09/30 13:14:30	Underway Science seawater	start	NaN	NaN	NaN	64.069989	-52.109291		eCheung1	
20221001.1537.001	20221001.1537	2022/10/01 15:38:04	Underway Science seawater	service	NaN	NaN	NaN	67.107425	-56.364080		eCheung1	Flow stopped due to bubbles. Cleared air from pump
20221001.2304.001	20221001.2304	2022/10/01 23:04:49	Underway Science seawater	service	NaN	NaN	NaN	66.993977	-57.055581		sBrugger1	Flow stopped due to bubbles. Bled air out.
20221002.0449.001	20221002.0449	2022/10/02 04:49:52	Underway Science seawater	stop	NaN	NaN	NaN	67.012336	-57.356250		eCheung1	Stopped while on station in poor weather
20221002.1645.001	20221002.1645	2022/10/02 16:45:22	Underway Science seawater	start	NaN	NaN	NaN	67.003172	-57.374717		sBrugger1	

Next steps

- Start meeting again in early 2023
 - Recruit other interested team members
- Need additional expertise on team
 - o Science users
 - Marine engineers
- Build draft text in 2023
- Goal to present at RVTEC 2023
 - O Get feedback, test methods, and submit to OBPS

An update on: Developing CTD Best Practices

RVTEC 2022 November 2, 2022

Group Members & Working Group Leads

Laura Stolp Rolling Deck to Repository Woods Hole Oceanographic Institute Shipboard Scientific Support Group

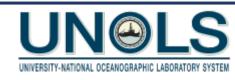
Rebecca Hudak Rolling Deck to Repository Woods Hole Oceanographic Institute Shipboard Scientific Support Group

John Ballard: UCSD Susan Becker: UCSD Lynne Butler: URI Peter Shanks: Australian Antarctic Division Taylor Crockford: WHOI Alexa Gonzalez: NOAA Morgan Hudgins: UGA Mike Kovatch: UCSD Gabe Matthias: Independant Leah McRaven: WHOI Fernando Santiago-Mandujano: UH Katherine Egan: NOAA

Tier Structure

Tier 1

These practices would be the fundamental CTD best practices and incorporated in Tier2 and Tier 3. The idea being that data collected using these BP would be uniformly collected across the fleet.


• Ship technician and crew/science party for deployment

Tier 2

- Science party involved and has responsibilities
- Bottle samples some salinity/oxygen, maybe done on ship or on shore, not all bottles nor all CTD casts

Tier 3 - Gold Standard

- CTD group (ie ODF, GoSHIP, WOCE)
- Oxygen sample taken



These practices would be the fundamental CTD best practices and incorporated in Tier 2 and Tier 3. The idea being that data collected using these BP would be uniformly collected across the fleet.

- Ship technician and crew/science party for deployment
- Minimum instrumentation on package
 - Dual temperature/conductivity
 - Oxygen sensor with backup on hand
 - Fluorometer
 - Transmissometer
- Responsible party technicians vs science .. science party should be cognizant of what needs to be done and technicians keep in mind to ask science to do what they can do.
- Data checking in realtime- what tools can be used

Tier 2 - Intermediate

- Everythin in Tier 1
- Science party involvement with responsibilities
- Bottle samples some salinity/oxygen, maybe done on ship or on shore, not all bottles nor all CTD casts
- Compare CTD sensors w/ underway sensor data
 - \circ $\,$ TSG to CTD salinity
 - \circ $\,$ Underway O2 to SBE 43 $\,$
- Second sensor on package 2 SBE43, 2 SBE3, 2 SBE4
- Data checking in realtime- differences between dual temp or dual cond.

Tier 3 - Gold Standard

- Inclusive of Tier 1 and Tier 2
- CTD group (ie ODF, GoSHIP, WOCE)
- Go Ship documentation
- Prioritize sample types
- Oxygen sample taken
 - Process on the ship Winkler titrations
 - Process later?
- Salinities Autosal run on ship for each cast all bottles
- On board processing..
- Data checking in realtime plotting temp/cond differences fitting O2 and Salinity.

Cleaning Compatibility Chart

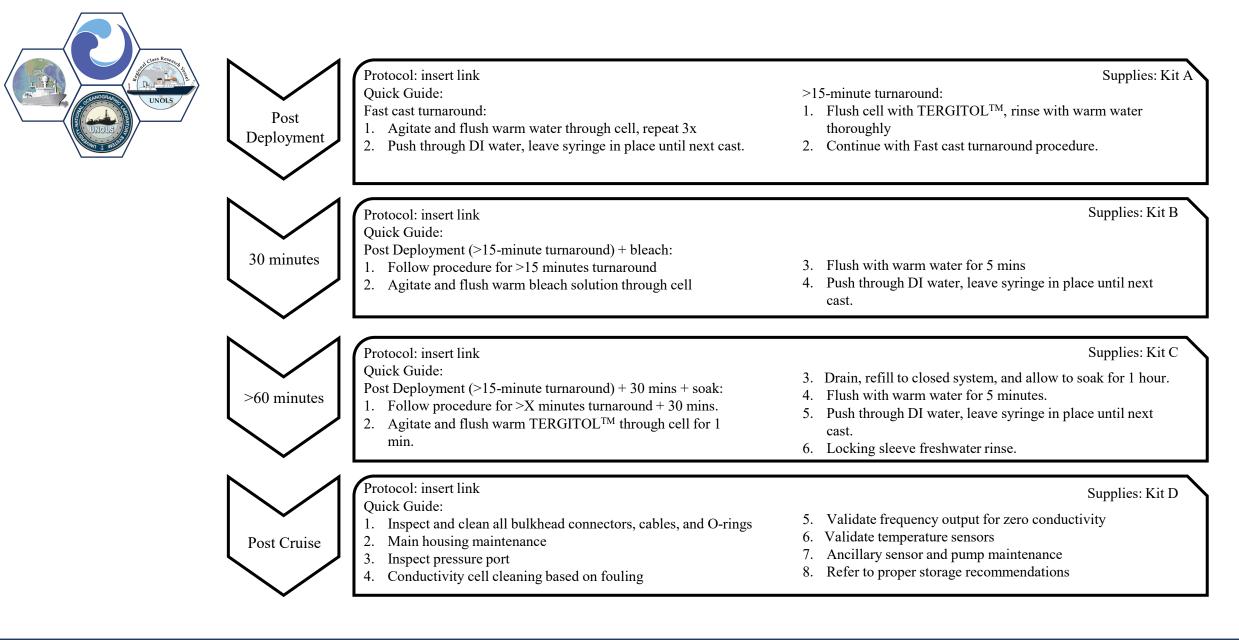
Sensors	Bleach	Tergitol/ Triton X	Vinegar	Lens Paper	High grade isopropyl Alcohol	DI H2O agitated cleaning	CLEAN Compressed air		Soapy water	HCL
Temp	Y	Y	Y			Y		Y	Y	
Cond	Y	Y	Y			Y	Ŷ	Y	Y	Not recommended
Oxygen		N				Y		Y	N	
O2 Optode		N				Y		Y	N	
Fluorometer		Y		Y		Y		Y	Y	
SUNA				Y	Y	Y		Y		
PAR		Y		1		Y		Y	Y	
SBE Pumps		Y				Y		Y	Y	N

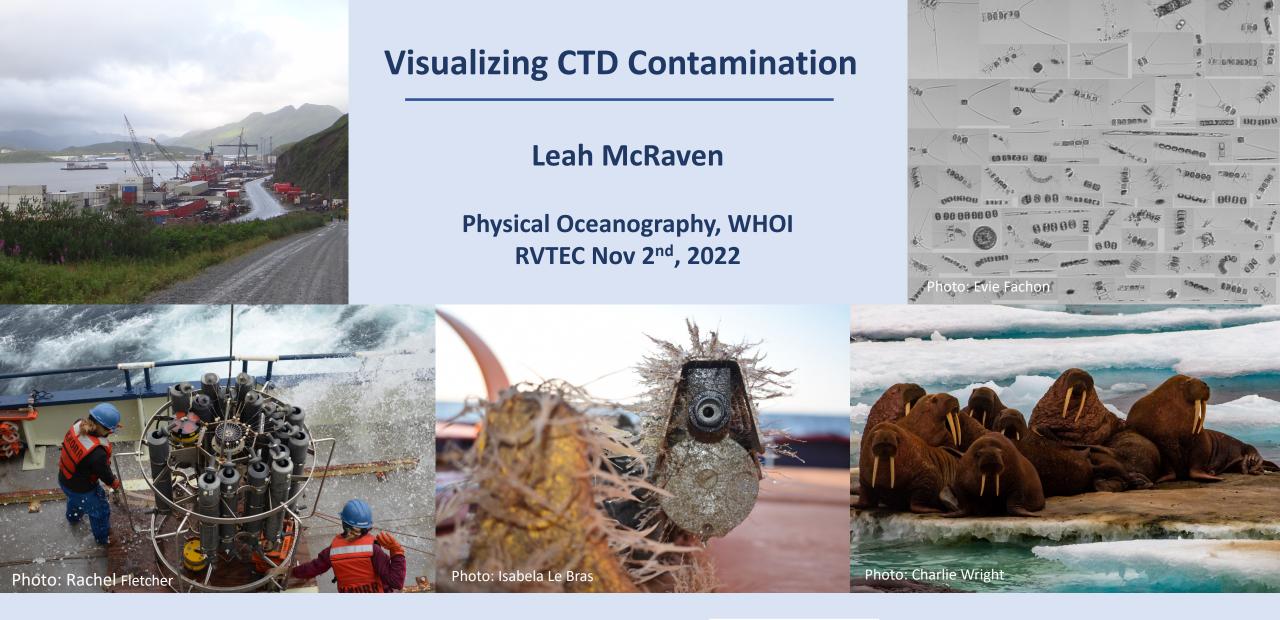
CTD Profiler Index

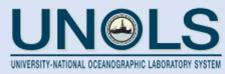
- Log sheet examples
- Cleaning charts
- Data/Deployment/Recovery Cheat sheets
- CTD manuals
- SeaBird Application notes
- Decision Trees

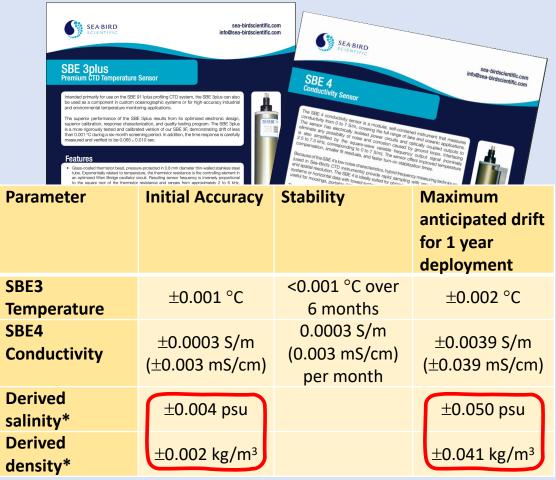
https://docs.google.com/document/d/1LZUypwV-IIP7dM2rYI_ljCDu1NrbAj3pU7TN3TDxrJI/edit

Decision Tree Discussion Points




• What do you do if it looks like something got sucked up and is throwing off your sensor readings?





Anticipated sensor accuracies and drifts

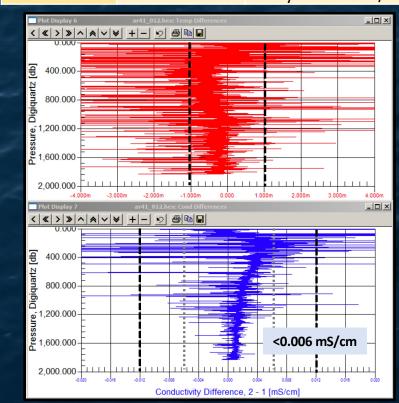
Example range of CTD end uses:

- Hydrographic profile measurements
 - High-accuracy calculation of in situ physical parameters, for example density, salinity, and sound speed velocity
- Complementary profile measurements
 - Calculation of physical values from auxiliary sensors, for example dissolved oxygen
- Physics-dependent discrete water sample analysis
 - Water sample analysis requiring in situ measurements, for example dissolved inorganic carbon and dissolved oxygen sample analysis
- In situ and density-referenced sensor validation and calibration
 - Sensors attached to CTD frame or deployed on other platforms (e.g. gliders, floats, and moorings) requiring validation or calibration
- Matching discrete water sample measurements to water masses and physical properties

* approx. for ranges -1-10 °C and 25-35 mS/cm

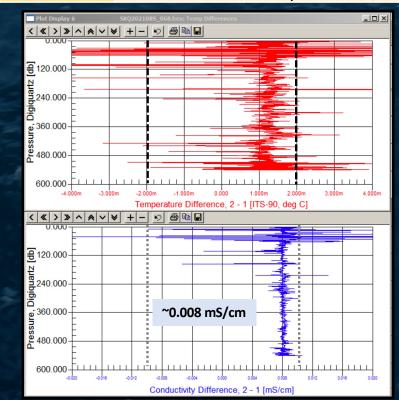
Visualizing anticipated sensor accuracies: Difference plots

Se


Te Co

These plots provide a
relative comparison, making
them suitable for detecting
changes that occur suddenly
or at a rate faster than
anticipated sensor drifts

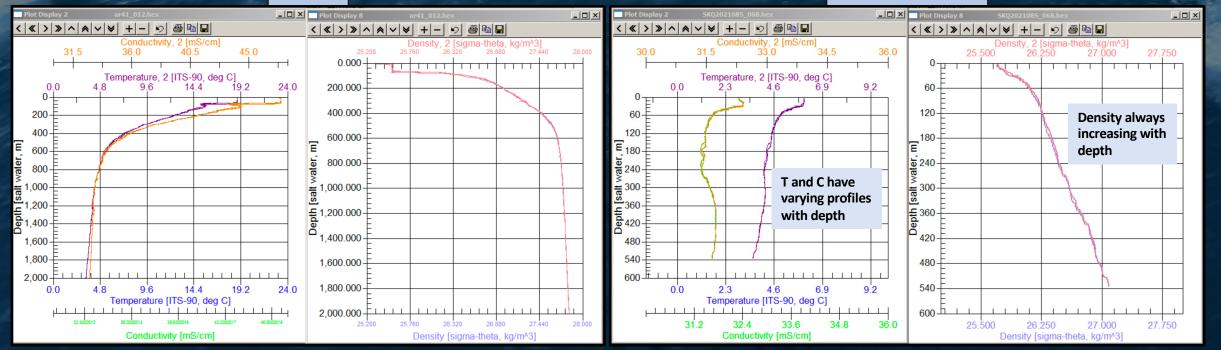
On average, sensor differences and their drifts should fall within 2× the anticipated accuracy


AR41

ensor	Time between	Anticipated
	calibration	accuracy
	and use	
mperature	10 months	±0.001 °C
onductivity	1 months	±0.012 mS/cm,
	4 months	likely ±0.006 mS/cm

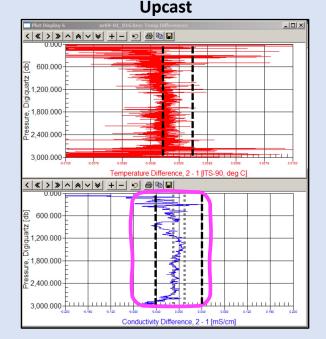
SKQ2021-08s

	Sensor	Time between calibration	Anticipated accuracy
		and use	
5	Temperature	16 months	±0.002 °C
	Conductivity	15 months	±0.045 mS/cm,
1		15 months	likely ±0.01 mS/cm


Visualizing anticipated sensor accuracies: Density plots

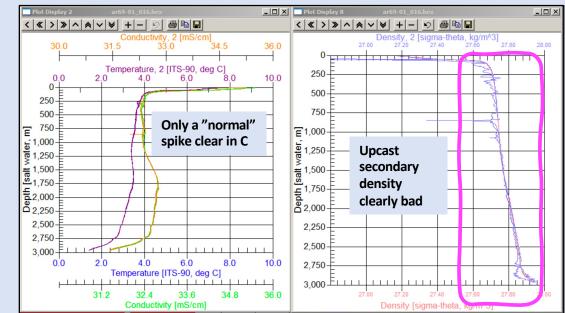
Calculated seawater density, in general, increases as a function of depth

Parameter	Initial Accuracy	Maximum anticipated drift for 1 year deployment
Derived density*		
	±0.002 kg/m ³	±0.041 kg/m ³
	*approx. for range	ges -1-10 °C and 25-35 mS/cm


SKQ2021-08s

AR41

Visualizing CTD contamination during acquisition: Sudden contamination

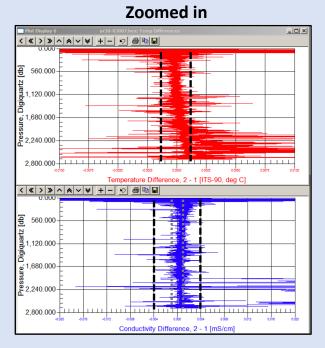

Downcast 600 000 1 200 000 1.800.000 224000003.000.000-0.0000 0.0025 Temperature Difference 2 - 1 ITS-90 deg C 600 00 1,200,000 1,800.000 2.400.000 3.000.000 Conductivity Difference, 2 - 1 [mS/cm]

- The downcast plots show a sudden and large change
- The period appears brief and as though the contaminant may have flushed through the unit around 800 m
- However, during the upcast, conductivity differences were larger than 0.04 mS/cm (about an order of magnitude larger than expected)

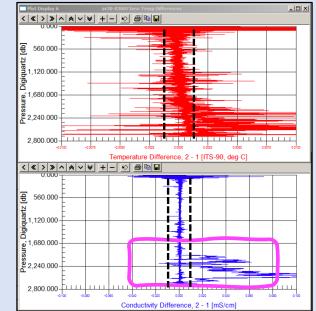
AR30-03 OOI Irminger 5

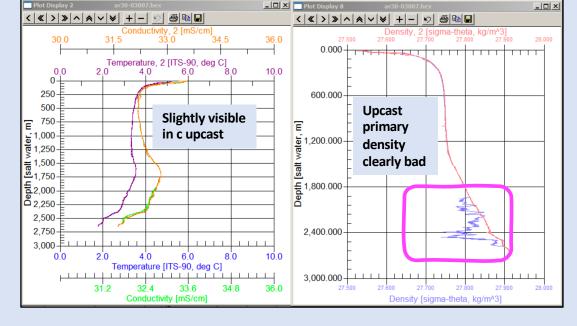
Sensor	Time between calibration and use	Anticipated accuracy
Temperature	<12 months	±0.001 °C
Conductivity	<12 months	±0.039 mS/cm, likely ±0.006 mS/cm

• The upcast density clearly highlights the secondary sensor suite as being impacted by the contamination event.


Impacted end users: All end users should be notified that secondary data may not be appropriate for use in any application

- Direct communication with CTD POC/Chief Sci
 - Elog event created


Visualizing CTD contamination during acquisition: Subtle contamination

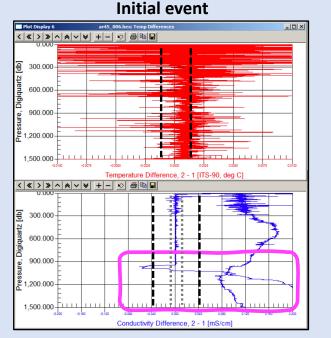

AR69-01 OOI Irminger 9

Sensor	Time between calibration and use	Anticipated accuracy
Temperature	<12 months	±0.001 °C
Conductivity	<12 months	±0.039 mS/cm,
		likely ±0.006 mS/cm

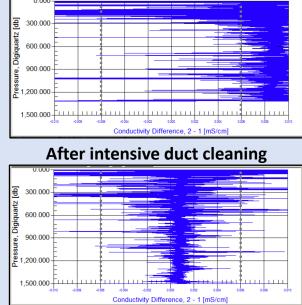
Zoomed out

- Check for differences that creep off the screen as it's easy to miss larger differences
- The upcast plots near the bottom show a sudden and large change
- Conductivity differences were larger than 0.08 mS/cm (about an order of magnitude larger than expected)

 The large offset occurs only on the upcast. This was the case for 6/23 casts for the cruise.


Impacted end users: users with high accuracy needs and those requiring upcast data (any discrete water samples, sensor validation/calibration) may not be appropriate for use

- Direct communication with CTD POC/Chief Sci
 - Elog event created

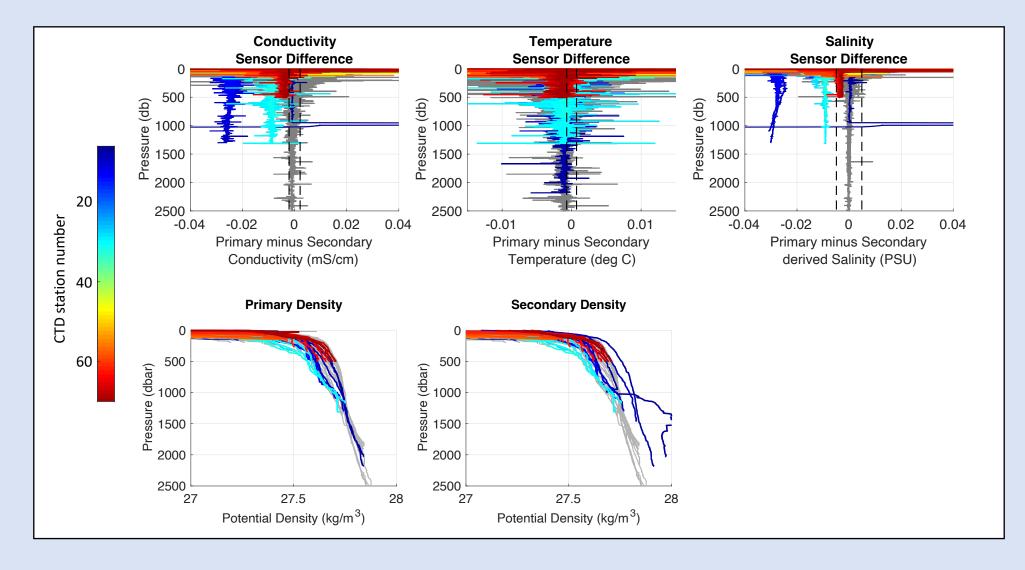

Visualizing CTD contamination during acquisition: Assessing the need for cleaning

AR45 OSNAP

Sensor	Time between calibration and use	Anticipated accuracy
Temperature	<12 months	±0.001 °C
Conductivity	<12 months	±0.039 mS/cm, likely ±0.006 mS/cm

After first flushing

- During station 6 a sudden contamination event occurred
- After sensor flushing, conductivity differences shown in the middle upper panel are on the order of 0.01 mS/cm and within an acceptable range based on anticipated values.
- However, prior to station 6, differences were consistently lower by an order of magnitude (less than ~0.002 mS/cm).



- Additionally, subtle density inversions continued to persist in the secondary data
- The SSSGs cleaned all CTD lines more thoroughly, including rigorous flushing of the ducting and clearing the capillary hole
- This fixed all conductivity offset issues as well as the density inversions

Visualizing CTD contamination during acquisition: Overlaying profiles

AR45 OSNAP

Sensor	Time between calibration and use	Anticipated accuracy
Temperature	<12 months	±0.001 °C
Conductivity	<12 months	±0.039 mS/cm, likely ±0.006 mS/cm

Resources that I am happy to share... And I would love to hear what others have!

Acquisition screen CTD contamination examples

Temperature differences should be less than \pm (2 x 0.001 °C) Conductivity differences should be less than \pm (2 x 0.003 mS/cm) or \pm (2 x 0.0003 S/m) *Note that 0.003 mS/cm is close to 0.003 psu for reasonable temperature ranges, which can be helpfi

Difference plots between conductivity and temperature sensor pairs provide <u>one</u> method for diagnosing CTD contamination. In general, differences should fall within, or very close to, the above ranges when sensors have been calibrated by the manufacturer within the past year. The rule can be relaxed in the upper water column, however deeper than -500-1000m, differences that consistently fall outside of this range indicate problematic sensor drift or contaministicn. If you notice this, please alert an SSSG tech.

Example 1: Something obvious got sucked into the CTD in the middle of a 2000m cast - alert an SSSG tech!

		AD X	Piot Depley 2.		
< < > > > A	××+->#**		< < > > ^ A	× ¥ + - ×	
0.000				Conductivity.	2 ImS/cml
e eco. 000			30.0	31.5 33	0 34.5
5 600.000			-	_	1 1
				Temperature, 2 [TS-90_dex C1
1,200.000			0.0	2.0 4.0	6.0 8.0
8 1	Cond difference		0		
1,800.000	went out of		250		and in
i F	plot limits!		500		/
2.400.000				1 11	
-			T 750	16	
a company from		hand and a second se	-1 000 -		
Street Street	also also also also al	be take also take alle	1,000 1,250	1 ((\)	Can also see in t
	Conductivity Difference, 2	- 1 (mSkm)	§ 1,250		
		101	i 1,500 -		primary and secon
<>>> > A A	マモ ナー り 登録記		1,500		overlay plot
0.000			\$2.000		
					Plot Display 8
600.000			a2,250	<	<>>> ^ A ~ ¥
-			2.500-E		0.000
1,200.000			2,750		F
1 800 000					600.000 F
1,300,000		Temp difference	3,000		00000
2.400.000		of0.001 C	0.0	2.0 4.0 2	F
2,400,000		is good!		Temperature	1,200.000
		tud und und und	لللللم		· F
1000100-000		to ado ado ado ado		31.2 32.4 🗎	1,800.000

Example 2: The CTD is dirty and no one has noticed yet - alert an SSSG tech

Plot Dealay 8 and 1_COLDesc Cand Officerences	Flot Oxplay 2 ar45_030.htt	201 B
(<) > > ^ A < 9 + - < 3 월일일	<<>>>>><<>>>><<<>>><<<>>><<<>>><<<>>><<>>><<<>>><<>><>><<>><>><<>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>><>>	
0100		
	Conductivity, 2 [mS/cm] 30.0 31.5 33.0	34.5 38.0
000 000	30.0 31.5 33.0	34.5 30.0
	Temperature, 2 IITS-90, der	o C1
1,200 000	0.0 2.0 4.0 6.0	8.0 10.0
	0	
1,000 000 Cond difference is	250	
consistently larger than		
2,400 000 0.008 mS/cm I	500	
2,497,000	750	
		his is difficult to
3,000,000	£1,000	ee in the primary
Conductivity Difference, 2 - 1 (mS/om)	g the C	and secondary
Phil Daglag 2 and L. Cillibras Trong Differences 20 X	£ 1,500	overlay plot
	81750 E	
	<u>3</u> 1,750	
	8,1,750 8,2,000	
	12,000 · 1001000000	ar45_030
	€2,000 2,250 < (<)>	~A~¥ +-
	42,200 2,250 2,500	~A~¥ +-
	€2,250 2,250 2,250	~A~¥ +-
(0) 000 (0) 000 (2) 000 (2	€2,000 2,250 2,500 2,750 7 7 7 7 7 7 7 7 7 7 7 7 7	~A~¥ +-
60.000 100.000 100.000 100.000 Average temp difference	€2,200 2,200 2,500 2,750 3,000 4 (≤)>> 6 600,000	~A~¥ +-
(1)000 Areas by the second sec	45 000 2,250 < (≤(≥))	
	€2,200 2,200 2,500 2,750 3,000 4 (≤)>> 6 600,000	
(0.00 (45 000 2,250 < (≤(≥))	
	45 000 2,250 < (≤(≥))	

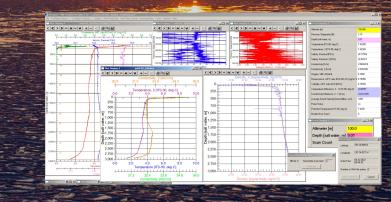
SELENTING Application SCIENTING Application Note 2D SCIENTING Application SCIENTING Appl

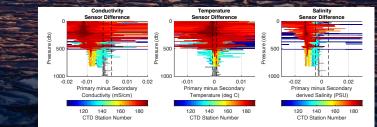
- This application note presents recommendations for cleaning and storing conductivity sensors. The application note is divided into four sections:
- General discussion
- Identifying damaged of severely fouled conductivity cells
 Rinsing, cleaning, and storage procedures
- Kinsing, cleaning, and storage
 Cleaning materials

General Discussion

Since any conductivity sensor's output reading is proportional to its cell dimensions, it is important to keep the cell clean of internal coatings. Cell electodes contaminated with oil, biological growths, or other foreign material will ventually cause low conductivity readings. To control growth of bio-organisms in the conductivity cell, follow these rinsing and cleaning recommendations.

- Bleach is extremely effective in controlling growth of bio-organisms in the conductivity cell. Sea-Bird recommends
 cleaning the conductivity sensor in a dilute bleach solution.
- Triton X-100 is a mild, non-ionic surfactant (detergent), valuable for removal of surface and airborne oil ingested into the CTD plumbing as the CTD is removed from the water and brought on deck. Sea-Bird recommends rinsing and cleaning th
- conductivity sensor in a Triton solution.
 White vincear, which is 5 8% acetic acid, may be used to remove minor mineral denosits on the inside of the cell
 - mich is 5 8% acetic acid, may be used to remove minior mineral deposits on the inside of the cen.


DECK:


1) Recover the CTD package

2) Secure the package - notify the bridge the package is secure 3) As soon as possible (i.e. can wait until after time-sensitive sampling is complete, but not for all sampling -e.g. Salts- to be complete). Flush the T/C sensors using the Seabird provided syringes (primary and secondary). Agitate warm (wrist warm) distilled water through the cell in a washing action (Forcefully pull the plunger in and out to flush the sensors.) Ensure unrestricted flow out of primary and secondary duct line. **Repeat forcible rinsing three times.** 4) For the last rinse fill the syringe with distilled water and force through tubing, leave the syringe attached to the conductivity sensor until the next CTD cast.

5) Once any sampling is complete - rinse the entire CTD including a thorough flushing of the pylon with catches in open position.

POST PROCESSING THE CTD STATIONS 1) Open Autoprocess CTD data terminal window 2) It should open to directory: D:\data\ctd\processing_setup

Quick references for acquisition screens

Manuals and protocols for CTD sensor and duct cleaning

SBE .psa display templates and Matlab code for plotting multiple stations together

Photo: Laurie Juranek