DIRECTORATE FOR GEOSCIENCES OFFICE OF POLAR PROGRAMS

Antarctic Research Vessel (ARV)

UNOLS Fleet Improvement Committee (FIC) Meeting

16 November 2022

NSF ARV Team

Stephanie Short, ARV Program Lead Tim McGovern, ARV Program Manager Mike Prince, ARV Project Manager

National Science Foundation WHERE DISCOVERIES BEGIN Overview

*Key Performance Parameter

90 Day Endurance – DRM

KPP: Endurance of \geq 90 without replenishment

Requirement to be evaluated against a Design Reference Mission (DRM).

The DRM would include 55 scientists/techs, icebreaking and ice transit, station work including DP and deployments and transits to areas of interest around Antarctica.

Three DRMs developed with input from Antarctic Science Program Managers and Current NBP Science Planners. Current evaluation is that DRM 1 & 3 are achievable, DRM 2 achievable at less than 90 days.

Design Reference Missions (DRM)	Open Water Transit	In Ice	Station work & DP	Total Days
1 - Thwaites – Pine Island Bay	26	12	52	90
2 - Larsen C	22	23	45	90
3 - Wilkes – George V Coast	48	12	30	90

Figure 1: Future Thwaites Glacier Cruise Track

Thwaites Glacier

PC3 & Icebreaking KPP

Key Characteristics and Capabilities

LOA	365' (111 m)
LBP	349' (106 m)
Beam (max)	80' (24 m)
Draft	32' 6" (9.9 m)
Displacement (full load w/345 LT SLA)	13,004 LT
Accommodations with one ADA stateroom	55 Science 29 Crew
Range	17,000 nm
Endurance	90 Days
Speed	11-12 kts cruise 14 kts Max

Characteristics

- Large Configurable Labs
- Science Sea Water System
- Baltic Room CTD Operations
- Science Staging Bay Back Deck Operations
- UAV/Aviation Deck and forward Hanger
- Marine Mammal and Sea Bird Observation Area (enclosed)
- Science Container Hold (8ea 20' ISO containers)
- Box Keel sonars w/ Ice Windows
- Retractable Center Board (Drop Keel) sonars w/o Ice Windows
- Science Support Small Boats (4)

Capability

- 40m 50m Piston Coring System
- Coring and Oceanographic Traction Winches
- Primary and Secondary Hydrographic Winches
- CTD Launch and Recovery System (LARS)
- · 20 ton Stern and Starboard A-Frames
- 7,000+ sq ft Aft Working Deck
- 170 ft open Starboard Deck
- 8,000+ sq ft Main Deck Lab space

Classification

ABS & A1	ESS-LIBATTERY	
Oceanographic	HYBRID IEPS	
AMS	ILM	
ILM	UWILD	
ACCU	Ice Class	
BWT+	PC3	
Unrestricted service CCO-Polar	NIBS	
HAB++(WB) ENVIRO	CS 2	

General Arrangement – Recent Changes

www.nsf.gov/geo/opp

OFFICE OF

POLAR PROGRAMS

General Arrangement – Main Deck

Over 7,000 sq. ft aft working deck

OFFICE OF

POLAR PROGRAMS

Lab & Science Support Spaces

Lab Space	Area (sq. ft.)	Science Support Space	Area (sq. ft.)
Main Lab	1,520	Microscope Room	192
Science Operations Center	1,131	AutoSal Room	100
Wet Lab	900	Liquid Nitrogen Plant	
Aquarium	420	Transceiver Room	180
Biology Lab	758	Science Storeroom (main deck)	
Hydro Lab (Bio-Chem Analytical Lab)	737	Science Hold (1 st and 2 nd Platform)	8 Vans
Electronics Lab	792	Van Bay (Main Deck)	3 Vans
Marine Mammal Observatory	1,142	Aft Staging Hanger (main deck)	480
Atmospheric Lab	1,661	Forward Hanger (AUV/Aviation Deck)	1,300
Meteorology Lab	338	UAV/Aviation Deck	
Cold Lab (Cold Science Storage) (2)	144 ea.	ET, MT, Carpentry Shops, Server Room	
Conference Room(s), Telepresence		Changing Room, Office Space	

General Arrangement – 01 Deck

PLAN 6-5B 01 LEVEL 57'-6" ABL RSV #5

200

Winches & Handling Systems

Winches

Oceanographic Traction Winch – 2 drums: 12k m 9/16" & 10k m .681 F/O or .680 Coax EM (Below Deck)

Coring Traction Winch – 1 drum: 7k to 10k m $\frac{3}{4}$ " synthetic cable w/100k lb. breaking strength. Winch line pull 80k lb.

Hydro/CTD winches (2) – 10k m $\frac{1}{4}$ " to $\frac{1}{2}$ " .322 EM, F/O or wire rope. Either winch serves Baltic Room or Stbd. A-Frame

Handling Devices & Cranes

Stern A-Frame – 40k lb. SWL – 180-degree range of motion.

Stbd. Side A-Frame – 40 lb. SWL – serve coring & hydro winches.

CTD Lars – Baltic Room

2 Heavy Lift cranes – Stbd & Port Main Deck – 65' reach - Load Charts being developed – 20k lb. 20 ft beyond side.

Aft Deck Portable Crane – 4,000 lb.

Forward Crane (UAV deck) – 4,000 lb.

Science Small Boats

Science Small Boats

20 – 30' RHIB (2) – Open Boat w/large payload, low dead rise hull, air collar/fendering system, bow pulpit, light davit, bolt pattern for mounting instruments.

~ 30' Science Survey Work Boat – Handling system, light winch, instrumentation, acoustic systems, Navigation and Safety Systems.

~ 30' Landing Craft – looking at innovative solutions

Acoustic Systems

Drop Keel

Drop Keel Systems	Box Keel Systems
EK-80 Bio-Acoustic System – 18, 38, 70, 120, 200 & 333 kHz	ADCP – 38, 75, 150, & 300 kHz
EM-712 Multibeam – 1 x 1 array	EM-124 Multibeam - 1 x 1 array
2 Spare Transducer Wells	SBP 29 Sub-Bottom Profiler (uses EM124 receive array)
Hydrophone, Speed Log	USBL – HIPAP 502P
Fwd. Looking SONAR & Camera	Hydrophones, cameras
Possible Side Scan SONAR	Possible additional Spares

Preliminary Design Rendering

Preliminary Design Rendering

Preliminary Design Rendering

Trade-Offs

Science Requirements Antarctic Research Vessel

ARV Schedule

ARV Project Timeline

Model Testing - HVSA in Hamburg, Germany

Testing currently ongoing Model scale is 21.336

Table 1: Model Test Subjects

Capability	Requirement
Open Water Performance	Speed and Powering
	Maneuvering
	Seakeeping
	Bubble Sweepdown
Ice Performance	Transit ahead and astern through ice
	Turning, and maneuvering through ice
	Transit through ice ridge formations
Propeller Design	Propeller performance in non-cavitating conditions
	Propeller performance in cavitating conditions

ARV Project Team

NSF has contracted with Leidos, the current Antarctic Support Contractor, to develop the Concept and Preliminary Design for ARV. Final Design and Construction will be awarded after Preliminary Design based on an open competition for a Vessel Integrator.

- Leidos Project Management Team:
 - Ethan Norris Project Director
 - Christopher Chuhran Program Manager
 - Hollie Anthonysz Project Manager
 - Ross Hein Project Science Mission Coordinator
 - Michael Minnig Project Engineer
 - Lisa Avila Project Administrator

- Design & Engineering Team (Leidos):
 - Gibbs and Cox Ship Design
 - Maritime Systems Division Systems Engineering
- ASC Mission Support Operational Requirements
- Consultants / Subcontractors:
 - Noise Control Engineering (NCE)
 - Glosten Naval Architect & Marine Engineering
 - Dan Oliver (Vessel Operator Consultant)
 - Marc Willis (Vessel Construction Consultant)
 - Spar Associates (Cost & Schedule)
 - HSVA (Model Test Basin)

Science Community Engagement

Science & Technical Advisors (STAs)

- 2-10 individuals Broad range of scientific & technical backgrounds, including:
- USCG icebreaker development & operations
- Naval Sea Systems Command shipbuilding
- ✔ Academic institution researchers
- ✓ Scientific technical managers
- ✔ Research vessel operators

Science Advisory Subcommittee (SASC)

- Dr. Bruce Appelgate, UCSD/Scripps
- Ms. Alice Doyle, UNOLS
- Dr. Amy Leventer, Colgate University
- Dr. Carlos Moffatt, Univ of Delaware
- Dr. Patricia Quinn, NOAA/PMEL; AC*
- Dr. Clare Reimers, OSU
- Dr. Deborah Steinberg, VIMS

Communications

U.S. Science

Community Outreach

RAGU

American Geophysical Union

ASLO

STATION NEWS Research Vessels

And the second s

New Antarctic Research Vessel

Advanced Icebreaking Research Vessel Development Beginning

The Director of the National Science Foundation (NSF) recently approved for the Office of Polar Programs Antarctic Research Vessel (ARV) project to move forward into the initial stages of the Major Research Equipment and Facilities Construction (MREFC) program. This is a major step forward in the development of an advanced icebreaking research vessel to replace the U.S. Antarctic Program (USAP) flagship research vessel, the RVIB Nathaniel B. Palmer. The RVIB Nathaniel B. Palmer has operational limitations and is reaching the end of its lifetime.

The RVIB Nathaniel B. Palmer has granted scientists access to ice-covered seas surrounding Antarctica for nearly 30 years, giving NSF-supported researchers a leading role in advancing the understanding of Antarctica and the Southern Ocean. The unique region offers an unparalleled laboratory for scientific discoveries in fields such as climate change, biology, and oceanography.

If the design is approved and the project is fully funded, the new vessel would begin operations in 2030. Below is a conceptual rendering of the new ARV.

Vessel Integrator

(VI)

Community Outreach

22

New Antarctic Research Vessel (ARV)

New Antarctic

Ship Design

Placemat

Current Science Miss Key performance parameters, operation found here.

Science Mission Requirements (PI

The ARV Preliminary Design Placemat is

ARV. It lists overall hull dimensions, inst

Cruise Quiet

Coese Deck

AV Hangar AV Workshop

7 GIBBS & COX

Engineers Stewards

325.3 ft 325.3 ft 73.3 ft 72 ft 28 ft 28 ft 71 ft

45 H 1.6 H 4.5 H

20T/60O

90 days 45 days 90 days

MACHINI

Bow They

NAVIGAT

ECDIS 5 & K Banc ke Radar DGPS

11 ke T / 12ke C

What's New?

New Antarctic Research Vessel Advanced Icebreaking **Research Vessel Development Beginning**

New Antarct

Read More

Documents Library

Concept Design

· Conceptual Design Memo

Leidos ARV Conceptual Design Memo p

Concept Design Reports (Glosten Documents)

19136 Concept Design Report a

- 19136 Science Berthing Study Project Memorandum #
- 19136.01 ARV Deck De-icing Systems Study Status Update 09/29/20 a
- 19136.01 ARV Ice Environment Study Status Update 09/25/20 a
- 19136.01 ARV Jumbo Piston Coring Study Status Update 09/25/20 a 19136.01 - Manning Study p

Trade Off Studies

- 19136-000-01 ARV USCG Compliance Study Report p
- 19136-000-02 ARV Propulsor Study Report a
- 19136-000-03 ARV Power Systems Study Report a
- 19136-000-04 ARV Climate Study Report a
- 19136-000-05 ARV Seakeeping Study Report a
- 19136-000-06 ARV Ice Environment Study Report a
- 19136-000-07 ARV Green Ship Alternatives Report m
- 19136-000-08 ARV Autonomous Vehicle Handling Study Report a

supports a broad community of interests, organizations and research in

- 19136-000-09 ARV Deck De-Icing Study Report a
- 19136-000-13 ARV Triple Propulsor Report a

Applicable UNOLS Guidelines and Reports

COMMU American Disabilities Act (ADA) Guidelines for UNOLS Vessels y Baltic Room Area 1.200 ft sq INMARSAT I Refueling Fuel Cargo Capacity leidos 60.000 gal ay 18, 2022 FOR OFFICIAL USE ONLY Design placemat of the new Antarctic Research Vessel Credit: NSF, Leidos Inc.

What is Future USAP?

Future USAP is a part of the United States Antarctic Program (USAP). Funded by the National Science Foundation, Future USAP is dedicated to long range investments in Antarctic infrastructure.

News and Updates

future.usap.gov/arv

Antarctic Research Vessel Summary

- ~20 years of sustained scientific demand
- Continued ability to support cutting edge NSF research for the next 40 years
- Enhanced capabilities over existing USAP research vessel
- Competent approach and highly qualified team

OFFICE OF

POLAR PROGRAMS

Questions? Comments?

.

-NSI