High Performance Aircraft for Global Scale Oceanography

[Image: Alec Chin]

Britton Stephens NCAR Earth Observing Laboratory

with thanks to Matt Long (NCAR); Ralph Keeling, Eric Morgan, Jonathan Bent (SIO); Kathryn McKain, Colm Sweeney (NOAA/CU); Eric Kort (U Mich); the HIPPO, ORCAS, and ATom Science Teams; and collaborating modeling groups

Outline

- Global aircraft campaigns: HIPPO (GV 2009-2011), ORCAS (GV 2016), and ATom (DC-8 2016-2018)
- Improved estimates of Southern Ocean air-sea CO₂ exchange
- Hemispheric-scale estimates of marine
 productivity

Key points

- Aircraft can capture atmospheric signals that are representative of large-scale ocean processes and largely independent of transport uncertainty
- High-performance¹ aircraft are uniquely suited to address grand challenge problems in ocean and climate science at global scale

[Image: Jonathan Bent]

¹defined here as > 5000 lb payload, > 5000 nm range, > 8 hrs endurance

NCAR Airborne Oxygen Instrument (AO2)

NCAR/Scripps Medusa Flask Sampler

HIPPO oceanography examples

Atmospheric observations of Arctic Ocean methane emissions up to 82° north

E. A. Kort^{1,2} *, S. C. Wofsy¹, B. C. Daube¹, M. Diao³, J. W. Elkins⁴, R. S. Gao⁴, E. J. Hintsa^{4,5}, D. F. Hurst^{4,5}, R. Jimenez⁶, F. L. Moore^{4,5}, J. R. Spackman^{4,7} and M. A. Zondlo³

Kort et al., Nat. Geo., 2014

Clim Dyn DOI 10.1007/s00382-016-3029-3

Constraints on oceanic meridional heat transport from combined measurements of oxygen and carbon

L. Resplandy¹(3) · R. F. Keeling¹ · B. B. Stephens² · J. D. Bent² · A. Jacobson³ · C. Rödenbeck⁴ · S. Khatiwala⁵

- Pls: Harvard, NCAR, Scripps, NOAA
- Global and seasonal survey of CO₂, O₂, CH₄, CO, N₂O, H₂, SF₆, COS, CFCs, HCFCs, O₃, H₂O, CO₂ isotopes, Ar, black carbon, and hydrocarbons (over 90 species).
- NSF / NCAR Gulfstream V
- Five 3-week campaigns over 3 years, across Pacific continuously profiling between 87 N and 67 S
- https://www.eol.ucar.edu/field_projects/hippo

HIPPO1 January 2009

- PIs: NCAR, Scripps, CU/NOAA, U. Michigan, U. Miami, JPL
- Intensive survey of biogeochemical tracers over the Southern Ocean adjacent to Drake Passage
- NSF / NCAR Gulfstream V
- Six-week campaign 15 January to 29 February, 2016
- Regional boundary-layer sampling and large-scale profiling transects

Stephens et al., BAMS, 2017 Morgan et al., JGR, 2019

Early ORCAS Results

- Negative O₂:CO₂ correlations revealed the dominance of biological drivers on summertime CO₂ fluxes
- O₂ and CO₂ gradients suggest CESM overestimates summertime O₂ outgassing
- CO₂ gradients and O₂:CO₂ ratio suggest climatologies underestimate summertime CO₂ ingassing

- Pls: Harvard, UC Irvine, NOAA, NASA
- Global and seasonal survey of > 300 chemical and aerosol species, with a focus on CH₄ and O₃ reactivity
- NCAR/Scripps carbon cycle component funded by NSF
- NASA DC-8
- Four 4-week campaigns over 3 years, transecting both the Pacific and Atlantic between 87 N and 67 S
- Continuous profiling between surface and 12 km

Southern Ocean Carbon and Climate Observations and Modeling

Geophysical Research Letters

RESEARCH LETTER 10.1029/2018GL078013

Key Points: • Measurements from biogeochemical

profiling floats were used to estimate

air-sea fluxes of carbon dioxide

 Significant annual net outgassing of carbon dioxide was observed in the high-latitude Antarctic-Southern

In this region, a large difference with

previous estimates was found in winter when ship-based sampling is

Zone

sparse

Autonomous Biogeochemical Floats Detect Significant Carbon Dioxide Outgassing in the High-Latitude Southern Ocean

Alison R. Gray¹, Kenneth S. Johnson², Seth M. Bushinsky³, Stephen C. Riser¹, Joellen L. Russell⁴, Lynne D. Talley⁴, Rik Wanninkhof⁶, Nancy L. Williams⁷, and Jorge L. Sarmiento³

¹ School of Oceanography University of Washington, Seattle, WA, USA, ²Monterey Bay Aquarium Research Institute, Moss Landing, CA, USA, ³ Forgaram in Atmospheric and Oceanic Sciences, Princeton University, Princeton, NJ, USA, ⁴Department of Geosciences, University of Arizona, Tuscon, AZ, USA, ⁵Scippin Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA, ⁶Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, FL, USA, ⁷College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA

Gray et al., GBC, 2019

A decade of aircraft observations over the Southern Ocean

Long et al., Science, 2021

Observed patterns in atmospheric CO₂ over the Southern Ocean

• "Vertical" Gradient metric

 $\Delta_{\theta} CO_2 = \langle CO_2 \rangle_{\theta < 280K} - \langle CO_2 \rangle_{295K < \theta < 305K}$ where $\langle \cdot \rangle$ is the median value of CO_2 in the specified θ (potential temperature) range.

Long et al., Science, 2021

Seasonal evolution of gradients in $\Delta_{\theta}CO_2$

Long et al., Science, 2021

Emergent constraints on Southern Ocean air-sea CO₂ flux

Models sampled like observations: 90-day mean flux (>45°S) versus $\Delta_{\theta}CO_2$

Long et al., Science, 2021

RESEARCH

CARBON CYCLE Strong Southern Ocean carbon uptake evident in airborne observations

Matthew C. Long^{1.}, Britton B. Stephens¹, Kathryn McKain^{2,3}, Colm Sweeney³, Ralph F. Keeling⁴, Eric A. Kort⁵, Eric J. Morgan⁴, Jonathan D. Bent^{1,4}†, Naveen Chandra⁶‡, Frederic Chevallier⁷, Róisín Commane⁸, Bruce C. Daube⁹, Paul B. Krummel¹⁰, Zoë Loh¹⁰, Ingrid T. Luijkx¹¹, David Munro^{2,3}, Prabir Patra¹², Wouter Peters^{11,13}, Michel Ramonet⁷, Christian Rödenbeck¹⁴, Ann Stavert¹⁰, Pieter Tans³, Steven C. Wofsy^{9,15}

Long et al., Science 374, 1275–1280 (2021) 3 December 2021

HIPPO and ATom provide 18 global transects

∆ APO (per meg)

APO detrended using trend fit to Mauna Loa (25-month window)

Tropospheric average APO concentration

Poleward of 20 degrees, > 300 hPa, N₂O stratosphere filter, pressure and cos(lat) weighted

Derived cumulative APO fluxes

• Amplitude of cumulative APO flux is equivalent to the seasonal net outgassing (SNO) of APO, and with small corrections for CO₂ and N₂ also SNO of O₂. SNO closely tied to seasonal marine productivity.

Cumulative APO flux comparison to CMIP6 ESMs

CMIP6 median SNO = 416 Tmol APO

CMIP6 mean SNO = 223 Tmol APO

Concluding remarks

- HIPPO, ORCAS, and ATom provide unique insights into global ocean biogeochemistry
- Data are all publicly available
- NSF/NCAR GV and C-130, and NASA DC-8 are requestable
- A regular program of repeat airborne tomography would be invaluable for assessing carbon-climate feedbacks and validating mitigation efforts
- Funding for multi-year and multi-discipline campaigns remains challenging
- Future work includes a funded NYANG LC-130 measurements and a proposal in development for biannual NSF/NCAR GV deployments

Southern Ocean Carbon Gas Observatory (SCARGO)

- NSF Polar Programs funded project
- B. Stephens / M. Long Pls
- "Roll-on / roll-off" rack and inlet
- Initially measuring CO₂, CH₄, CO, and H₂O
- 139th EAS LC-130s operating between Christhurch, McMurdo Station, South Pole, and north from McMurdo, Nov-Feb
- To quantify gradients, and trends in CO₂ and CH₄

Airborne Mapping the Elements of Life in the Atmosphere Interdisciplinary Science Team:

NCAR: Britton Stephens (lead PI), Matt Long (co-PI), Adriana Bailey, Dan Amrhein University of Colorado / NOAA: Kathryn McKain, Colm Sweeney Scripps Institution of Oceanography: Ralph Keeling, Eric Morgan University of Washington: Abby Swann

- A new concept for small-scale tomographic GV deployments repeated two times per year for 4.5 years
- A light payload for measuring atmospheric CO₂, O₂, CH₄, H₂O, their isotope ratios, and related tracers

