RR2017 – Michel – Guaymas Basin

Development of an In situ Deep Sea Methane Sensor

Presented by Victoria Preston – MIT-WHOI Program Graduate Student

OCE OTIC #184-2053

ROV Jason - Ring Vent

AUV Sentry – Exploration / Plume Hunting

AUV Sentry – Exploration / Plume Hunting

• RR2107 served as a laboratory for new modeling and decision-making algorithms for hunting hydrothermalism.

• The method can leverage any available sensors for model simulation.

- Initial condition priors:
 - Vent temperature
 - Orifice area
 - Exit velocity

- Set current function:
 - Magnitude
 - Heading

- Background reference:
 - Temperature
 - Turbidity
 - Oxygen

• Using data from multiple instruments we could train a model of hydrothermalism in the basin that could be used for iterative missions.

AUV Sentry – Trajectory Optimization

Optimized

 Trajectory optimization over predicted plume waters placed Sentry lawnmowers alongcurrent directions to collect a diversity of nearplume observations.

AUV Sentry – Acoustic Science Monitor

- Acoustic messages with science-sensor status on Sentry were scraped over network UDP
- Data was parsed and data displays updated in real-time with a dive

Data Communications

