UNIVERSITY OF MIAMI ROSENSTIEL SCHOOL of MARINE & ATMOSPHERIC SCIENCE

R/V F.G. Walton Smith Refit

01 September 2019

Overview

- R/V F.G. Walton Smith is approaching 19 years of service
- Propulsion Engines and Ship Service Generators are maintenance intensive and do not meet EPA emissions regulations
- The ship's Bow Thrusters are undersized for station keeping and close maneuvering in moderate wind and/or currents
- The ship no longer has a functioning Dynamic Positioning System
- The Ship's Service Generators have difficulty holding a stable load given the growth of electrical demands over 19 years.

Upgrades and Modifications - Propulsion

- Recapitalize the propulsion system and ship service generators into a diesel electric parallel hybrid system.
 - Improved Reliability and Redundancy
 - Improved Fuel Economy
 - Lower Emissions
 - Lower Noise
- Upgrade existing Bow Thrusters with units having increased thrust
 - Enhanced station keeping
 - Enhanced maneuverability

Upgrades and Modifications – Operations

- Recapitalize the existing hydraulic winches with electric winches.
 - Improved Reliability
 - Lower Maintenance
 - Lower Noise and Vibration
 - Improved Safety with Automatic Heave Compensation
- Improve Station Keeping and Maneuvering
 - Dynamic Positioning System enables sampling and casting in place

Project Overview

- Project to be conducted in four phases
 - Spreads funding requirements over multiple fiscal years
 - Insures proper planning done in advance including purchase of long lead-time materials
 - Enables R/V F.G. Walton Smith to conduct operations as much as possible

Phase One

- Planning and Engineering
 - Planning
 - Assign Project Manager/Integrator who will oversee each aspect of the project
 - Creation of Work Specification
 - Source Selection of Shipyard for Refit
 - Engineering
 - Detailed Design and Drawings
 - Equipment and Machinery Selection
 - Electrical Wiring Diagrams
 - Procurement of Long Lead-Time Materials

Phase Two

- Dry-Dock Availability at Contractor Facility
 - Hull and Structural Modifications
 - Propulsion Removal and Installation
 - Bow Thruster Recapitalization
 - Sea Suction and Discharge Modifications

Phase Three

- Dock-Side Availability at Contractor Facility
 - Finish Propulsion Installation
 - Electrical Modifications
 - Control System Modifications
 - Includes Dynamic Positioning System
 - Winch Renewal

Phase Four- Dockside Work At RSMAS

Phase Four

- Dock-Side Availability at RSMAS
 - Additional Electrical and/or Piping Modifications
 - Galley Equipment Recapitalization
 - Habitability Upgrades

• Grooming new systems as needed after partial season of operations

Cost Estimates by Phase

Phase	Description	Start Date	End Date	Fiscal Year	Estimated Cost
1	Design	Oct 2020	Apr 2021	2021	\$ 795,000
2	Drydock (Contractor Facility)	Oct 2021	Jan 2022	2022	\$ 1,583,000
3	Dockside (Contractor Facility)	Feb 2022	Jul 2022	2022	\$ 1,841,000
4	RSMAS Pier-side	Jan 2023	Mar 2023	2023	\$ 457,000
	Total				\$ 4,676,000

Cost Estimate by Fiscal Year

Fiscal Year	Estimated Cost
2021	\$ 795,000
2022	\$ 3,424,000
2023	\$ 457,000
Total:	\$ 4,676,000