

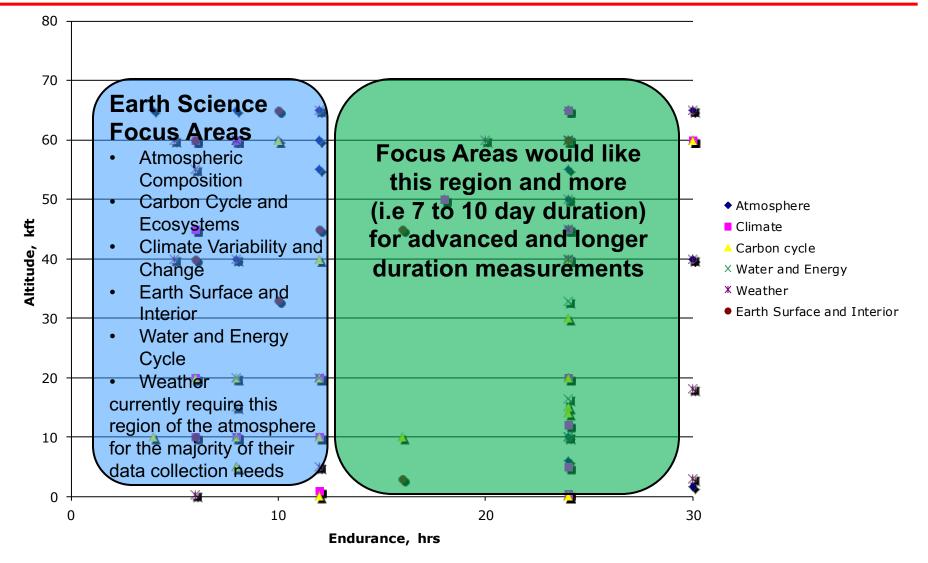
NASA Science Mission Directorate, Earth Science Division, Airborne Science Program Overview


September 12, 2019

Matt Fladeland, NASA Ames Airborne Science Manager

Airborne Platforms Provide Opportunities To Study the Earth System and its Components

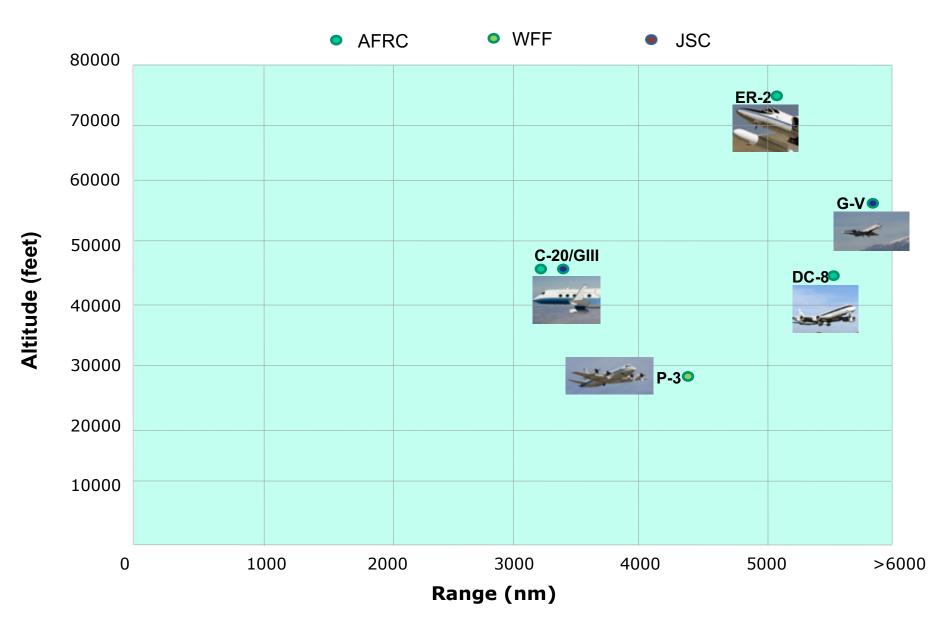
- Help bridge scales between the (typically) global scales of satellite observations and the very local observations of surface-based in situ measurements.
- Way of doing comprehensive process-oriented studies that can focus on specific regions and times of interest.
- Initial sense about Earth system parameters and their variability before satellite observations are possible.
- Focused calibration/validation observations (e.g., coincident measurements) for satellite remote sensing.
- Opportunities to test new instrumentation in an environment that can provide some similarities to space-based platforms/viewing.
- Targeted observations when needed for applications (e.g., disaster response).
- Opportunities for training of investigators who see through all phases of a project (instrument development, operation/use, analysis/interpretation, results dissemination, public communication).


- Provides airborne capability to meet Earth Science requirements utilizing NASA, OGA, and commercial platforms
 - Capability maintained/added/removed based upon budgets and requirements
 - Requirements vetted yearly
 - Actively looking for options
 - https://airbornescience.nasa.gov/
- Responsive to Earth Science airborne platform requirements
 - Over 300 airborne instruments and counting....
 - Over 3100 Earth Science flight hours in FY18

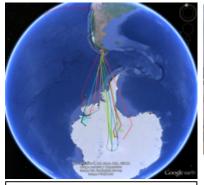
Earth Science Requirements

Platform performance required/desired from science community

Bottom Line – cost effective data collection from 500 - 70kft and from 2 - 30 plus hours and beyond (7 to 10 days)



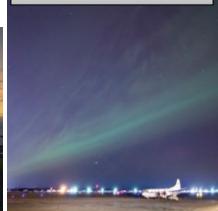
Recent Accomplishments


(as of May 2019)

- Hours Flown –over 3800 in FY17, over 3100 in FY18
- Completed Major Campaigns
 - Operation IceBridge: Antarctic and Arctic deployments
 - GV first science: SWOT and GEDI cal/val
 - EVS-2: Act-America, ATom, OMG, ORACLES
 - Aeolus cal/val
 - ABoVE continuity
 - Long Island Sound Tropospheric Ozone Study
 - HyspIRI CA and Hawaii
 - GLiHT Forest Health
 - Kilauea Response
 - ACEPOL
 - Airborne Snow Observatory
 - Multiple UAVSAR ESI investigations
 - SARP
- Major Platform Updates
 - GV completed two missions, two upcoming
 - Acquired GIII, mods ongoing
 - C-20A maintenance
 - ER-2 CARE ongoing

ER-2 in Hawaii for Hyspiri/HyTES

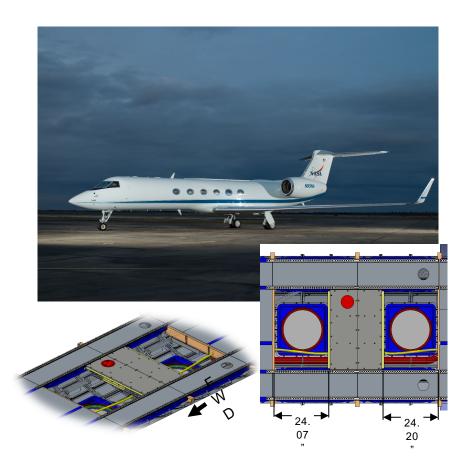
DC-8 Antarctic Flights 2018



G-V and team in Houston

P-3 on the tarmac in Fairbanks

P-3 in São Tomé for ORACLES



- Gulfstream V (N95NA)
 - Serial 672, built in 2002
 - Service Ceiling: 51,000ft
 - Max Speed: Mach 0.885
 - Normal cruise range: >5,000nm
 - Max Payload: 8,300lbs

- Two downward-facing viewports installed in forward cabin
 - FS 290.5 and 339.5
 - 20.75" x 20.75" opening
 - ⇒ Window viewable area will be smaller, circular
 - Includes mounting ring capable of ~350lb load (minus window pack)
 - Sealing blank for non-science flights

Gulfstream III

- Serial 478, built in 1986 as U. S. Air Force C-20B
- Service Ceiling: 45,000 ft
- Max. Gross Weight: 69,700 lbs
- Max. Mission Duration: 8.5 hr
- Max. Cabin Payload: 2610 lbs
- Max. Speed: Mach 0.85
- Normal Cruise Range: 3767 n.mi.

Two Identical Portals

- 18.16 x 18.16 in. portal "see through" opening
- 19.00 x 19.00 in. vertical portal flange
- 21.00 x 21.00 in. mounting flange

SIERRA Sensor Integrated Environmental Remote Research Aircraft

•SIERRA complements other UAVs in the NASA science fleet specializing in dangerous, low altitude missions that require larger payload capacity than typical small UAVs

• Airframe designed by NRL; systems development and integration at NASA Ames

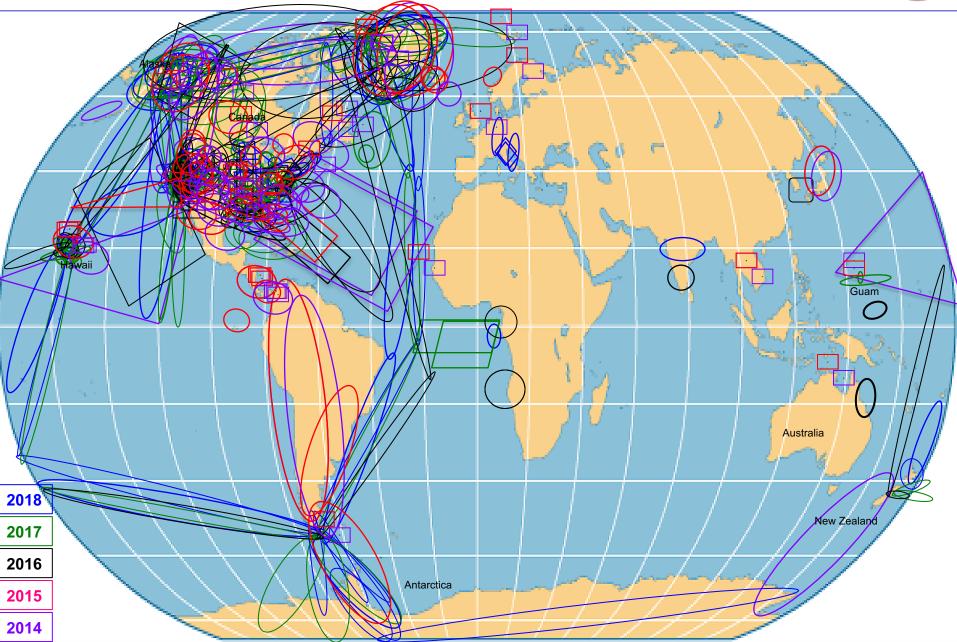
- Ship 1 operated Oct 2008-Jul 2013
- Payloads flown include:
 - VIS/NIR Hyperspectral Imager (NASA Ames)
 - LIDAR Profilometer (CU-Boulder)
 - Ocean Color suite (NASA GSFC)
 - MMS (NASA Ames)
 - CO2/CH4/H20 (Los Gatos Research/Picarro)
 - C-Band SAR (Artemis/BYU)
 - UHF/L-band SAR (Mirage Systems)
 - Flux-gate Magnetometer (Geometrics)

Phil Schulyer, SIERRA crew chief with the aircraft carrying a GP-SAR antennae and modified nose

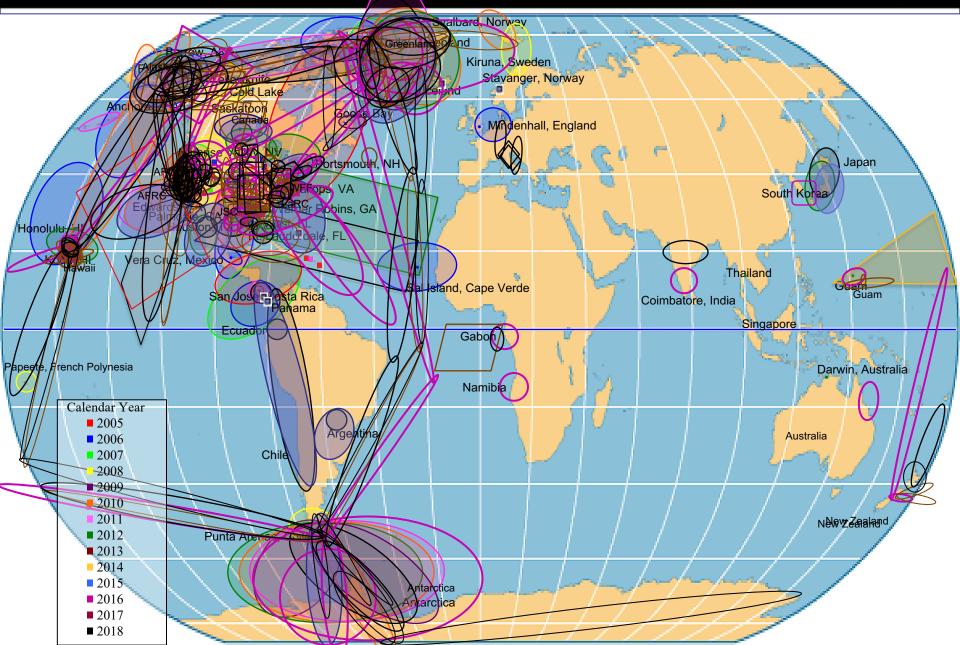
Wing Span	20 ft.
Length	11.8 ft.
Height	4.6 ft.
Wing Area	42.4 sq. ft.
Empty Weight	215 lbs.
Gross Weight	375 lbs.
Max Speed	79 kts.
Cruise Speed	55 kts.
Stall Speed (clean)	30 kts.
Aspect ratio	9.43
Rate of Climb	545 ft./min.
CG Position	29-32% Chord
Payload weight	~100lbs
Payload power	28V DC
Duration	8-10 hrs

Swift Engineering has SBIR Phase II funding to flight test a 30-day vehicle with 15lb payload at Yuma in Summer 2019 at Yuma Proving Grounds. ASP supports a Technical Monitor to the project and is providing a test payload to validate platform capabilities.

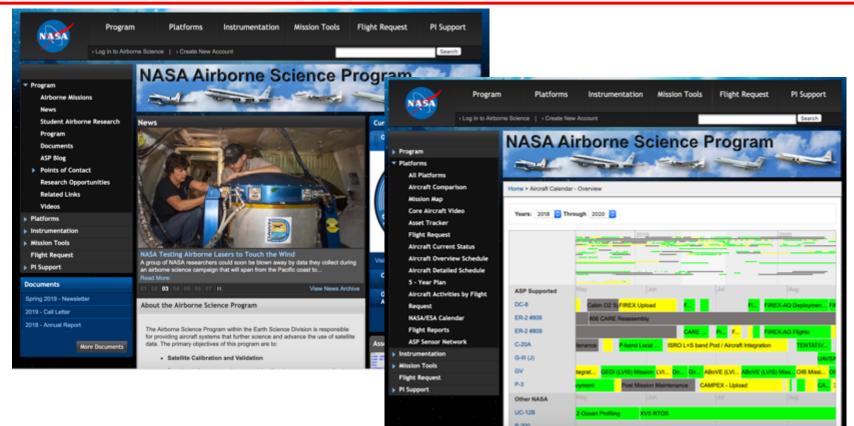
- NASA has been leading the development and science rationale for this new type of aircraft for 2 decades.
- Solar electric platform flying at 70kft for weeks to months with smaller payloads
- Provides observations similar to geostationary satellites; cubesat testbed
- Airbus Zephyr, Aeroenvironment+Softbank, Aurora Odysseus, and Prismatic are commercial programs in development
- NASA is funding Swift Engineering to test a prototype aircraft in summer 2019.
- Costa Rica is one location that is being investigated to support flight testing



LiS battery

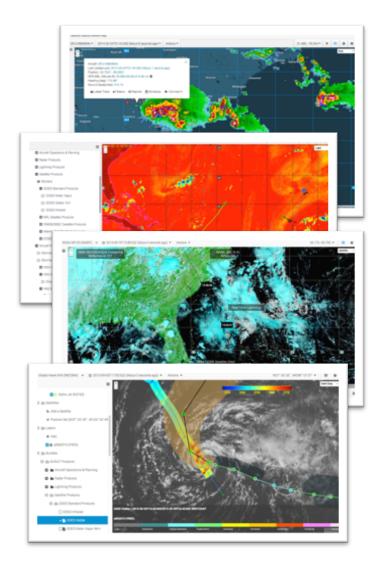

ASP Airborne Campaigns 2014-2018

2005-2018 Airborne Campaigns



Airborne Science Program Online Resources

- Airborne Science asset details and schedules are available online at:
 - https://airbornescience.nasa.gov
- Aircraft cost estimates and flight hours can be requested using the online flight request system:
 - <u>https://airbornescience.nasa.gov/sofrs/</u>



- Tactical decision-making and distributed team situational awareness
- Real time position and instrument telemetry ingest and visualization for single- and multi-asset campaigns
- Access to low latency satellite, radar, global lightning and other meteorological and mission products
- Communication and collaboration tools including document sharing and turn-key chat solutions
- Satellite pass prediction and swath visualization
- Mission operation and planning tools

Project Lead: Aaron R. Duley, Ph.D. NASA Airborne Science Program Ames Research Center, Moffett Field, CA For more information visit: https://mts.nasa.gov

	NASA	Airb	orne	Scie	ence	e Pro	ogra	m 6-	Mon	th S	che	dule	star	ting	Sep	tem	ber 2	2019) (gen	erate	ed 9/.	11/20)19)			
	FY19														20											
	(Q4			Q1												Q2									
	Sep				Oct					Nov			Dec				Jan					Feb				
ASP Support	ed Airc																								_	
DC-8	FIRE)		1A M	RDO	Code	FIRE	X-AQ	Stand	oy Loc	al Fligh	DC-8	Heavy	/ Maint	enanc	е											
ER-2 #806	806 CARE Reassembly																									
ER-2 #809	Hyspl Hysp	oIRI Fli	ghts	Hysp	Pilot	Rosc	Rosc	oe Flig	Pilot	AirLU	Pilot	Profici	IMPA	CTS U	200 h	nr Main	itenan	(IMPA	CTS P	IMPA	CTS S	cience	Flight	S		
C-20A	Maintenan	се	ISRO	L+S b	and P	od / A	vircraft	Integra	a ASAF	R Loca	TENT	ASAF	R Loca	L-ban	Id SNC	Maint	enanc	e: Op	s 1&2			RDO		RDO		
G-III (J)	UAVSAR, .	A	L-bar	ו	L-bar	n <mark>L-</mark> bar	nd NIS	<mark>) L-</mark> bar	n																	
GV	OIB Missio	n <mark>Direc</mark>	t Retu	n Direct		OIB I	Missior	า				-														
P-3	CAMPEX -	Scien	ce Fligh	nts	CAM	CAM	Annı	ual Mai	ntenar	IMPA	CTS -	IMPA	CTS -	Upload	b		IMPA	Pilot ⁻	IMPA	CTS -	Scienc	e Fligh	its			
Other NASA	Aircraft									_	_		-		_	-		-	-							
UC-12B	IPDA 2019	9																								
B-200																										
B-200 (A)	RDO	Tiger	r Shark	FT6 F	lights								TENT	ATIVE	- Dop	RDO		RDO		RDO		RDO		RDO		
B200 (L)		Phas	se Insp	ection								ACTIVATE Flight Prep									ACTIVATE					
C-130H #436	C-130 Maii	Maintenance and Air Drop Modifications											Fucnt	Air Dr				Com	nercial			Comm	nercial			
Sherpa																										
Cessna																										
Cirrus SR22																										
DE																										
C-20B	Base Upload CMIS CMIS																									
HU-25A #524										ACTI	VATE															
Lear 25																									Γ	
S-3B																										