

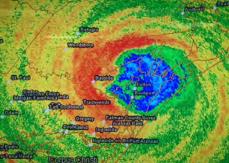
Bringing UAS to America's Skies

Activities at Lone Star UAS Test Site and TAMUCC

An update Scientific Committee for Oceanographic Aircraft Research August 22, 2018

<u>Presenter:</u> Michael Starek Associate Professor Civil and Geospatial Engineering

FAA Test Site: ~3200 flights and 250+ customers (to date)


Update information provided by Jerry Hendrix, Executive Director of LSUASC

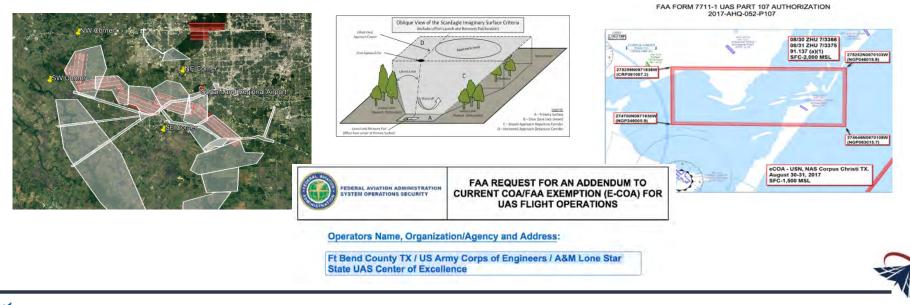
Hurricane Harvey The Need

- Damaged areas in Texas (Storm Surge, Hurricane/Tornado Wind Damage, Flooding)
- All Emergency Operations Centers (EOC) were functional in an area the size of the state of New York
 - 54,000

square miles

- Flooding in Houston
 - 1212 Square Miles

Hurricane Harvey Missions


- LSUASC provided an Emergency Response UAS Initial Operational Capability document to the state EOC/AOC
- Provided reconnaissance assistance to the County/State EOCs
 - Aransas County Search, Rescue and Recovery
 - Survey of the Port of Corpus Christi and ship channel
 - Houston flooding survey in west Houston areas
 - Survey for the General Land Office (GLO) of oil platforms from barges
 - Assessment of a Port Mansfield ship channel damaged vessel

4

BVLOS Operations

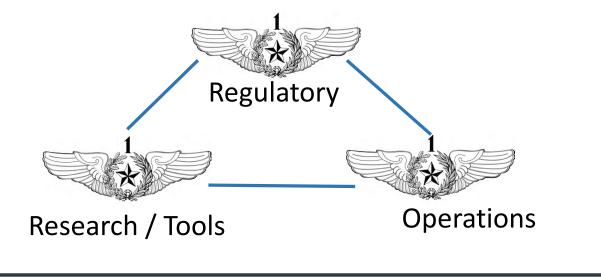
- Temporary Flight Restriction (TFR) and ECOA approved
 - State, FAA, US Navy, Boeing, Port of Corpus Christi, USACE, LSUASC
 - ScanEagle UAS operating with a transponder & call sign
 - Flight area Aransas County / Rockport TX
 - Part 107 Waivers approved to 14 CFR Part 107.31, 107.41, 107.51

Hurricane Harvey Regulatory Lessons Learned

- It is imperative to get Temporary Flight Restrictions (TFRs) and eCOAs/ Special Governmental Interest COAs in place as soon as possible
- Part 107 Waivers can be obtained quickly during a disaster (BVLOS, Operations over People, Class Airspace)
- Understanding the standup of national and regional support from the FAA is imperative
- Work within incident structure \rightarrow **No** research!
- Credentialing of operators to support disasters is critical
- Future rescue, recovery and resiliency planning is needed
- Activate a BVLOS eCOA along the coast of Texas prior to landfall

What is next for Texas!

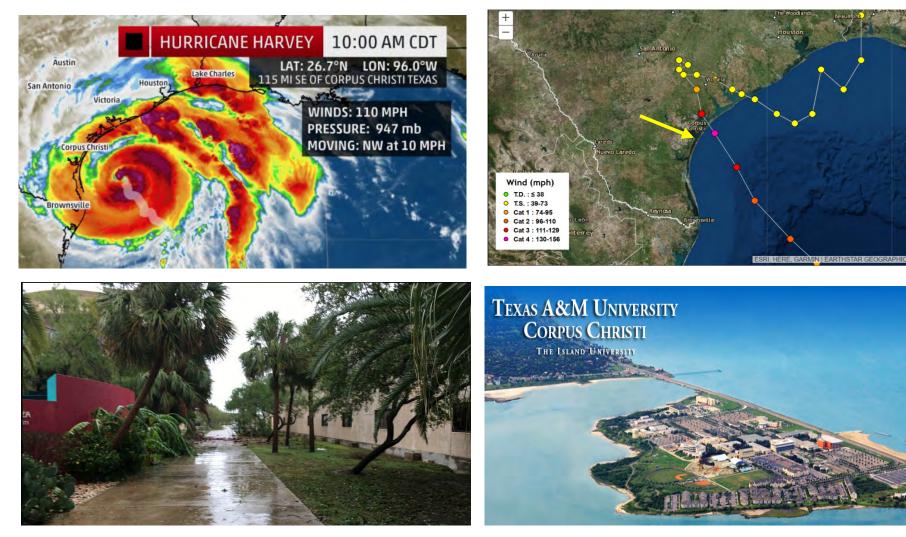
- TAMU System was chartered by the Governor to lead Rebuild Texas
- All disasters start and end at the local level
- Texas recognized the need of UAS as part of the State emergency "air" response
- The LSUASC has now been selected as Texas Task Force Air Wing 1



Driving Force: Controlled, organized and **safe** UAS operations in the state of Texas in the midst of Disaster Response.

Texas Task Force Air Wing 1 Way Ahead

- Establish operational paradigms and finalize arrangements across Texas
- Establish Emergency Operations Center Air Boss for UAS
- Conduct research and acquire environmentally hardened operational aircraft
- Create a backend data repository and central imagery storage node for nearreal time analysis and support planning

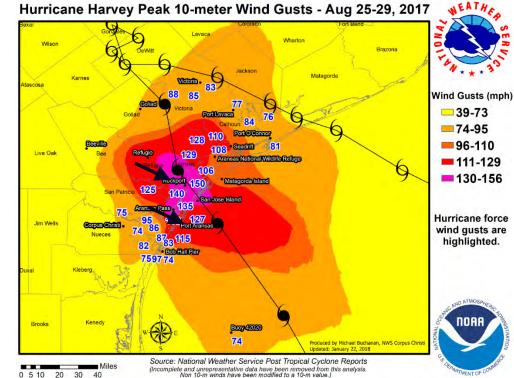


UAS Activities at TAMUCC

11

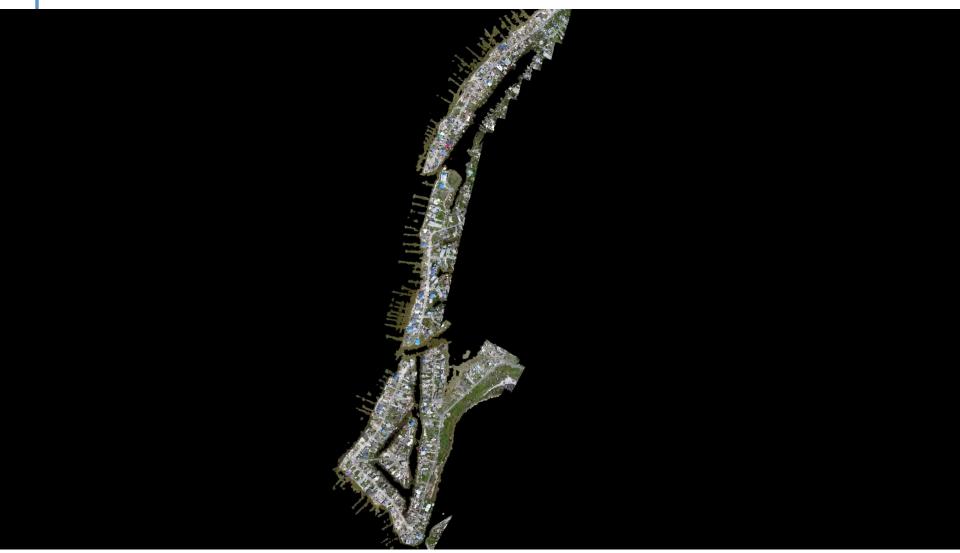
max of Cat 1 wind gusts on campus

esri



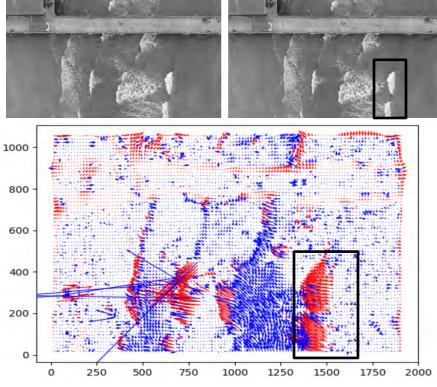
Rockport, TX (~20 miles north of campus)

Port Aransas, TX (~16 miles to northeast)



Geotechnical Extreme Events Reconnaissance *Turning Disaster into Knowledge* Sponsored by the National Science Foundation

Salt Lake Neighborhood, Rockport TX



Particle Image Velocimetry (PIV) for Surf Zone Wave Properties

Cummer 2010 DELL on Computing for LIAC

Experiment conducted at Bob Hall Pier, TX

- 1. Python PIV sequential image pair
- 2. Image stabilization
- 3. Estimate velocity vector field

UAS and TLS survey of Eleuthera, Bahamas

January, 2018

Study Purpose: determine potential of massive storm waves to transport "boulders", mapped ~9 linear miles of coast

NSF MRI Grant: Development of an Integrated Gas Monitoring and Source Identification UAS for Exploration, Compliance and Assessment

Payloads

Penguin B UAV

Microportable Greenhouse Gas Analyzer (CH₄, CO₂, H₂O)

Sony A6000 with GeoSnap Pro for smoothed orientation/positioning

UAV Factory

PARAMETER	VALUE
MTOW	21.5 kg
Empty Weight (excl fuel and payload) ¹	10 kg
Wing Span	3.3 m
Length	2.27 m
Wing Area	0.79 m ²
Powerplant	2.5 hp
Max Payload	10 kg
Takeoff method	Catapult, Runway or car top launch

Performance:

PARAMETER	VALUE	
Endurance ²	20+ hours	
Cruise Speed	22 m/s	

Flight Operations Training completed at the UAV Factory in Latvia, May 2018

Dr. David Bridges, Mo Griffin (Lone Star)

Sensor integration in progress

Lidar + UAS

Riegl VUX-LR

250m, 250mm @500m	
15 mm one Sigma @ 150m	

- Up to 1350 m range @ 60 reflectivity
- Multi-echo detection > 10 +returns
- 7.7 lbs (3.5 kg), 905 nm

- two batteries in series 12-cell 44,000 mAh
- ~20 lbs (9 kg) weight

Pulse Aerospace Vapor 55

SPECIFICATIONS

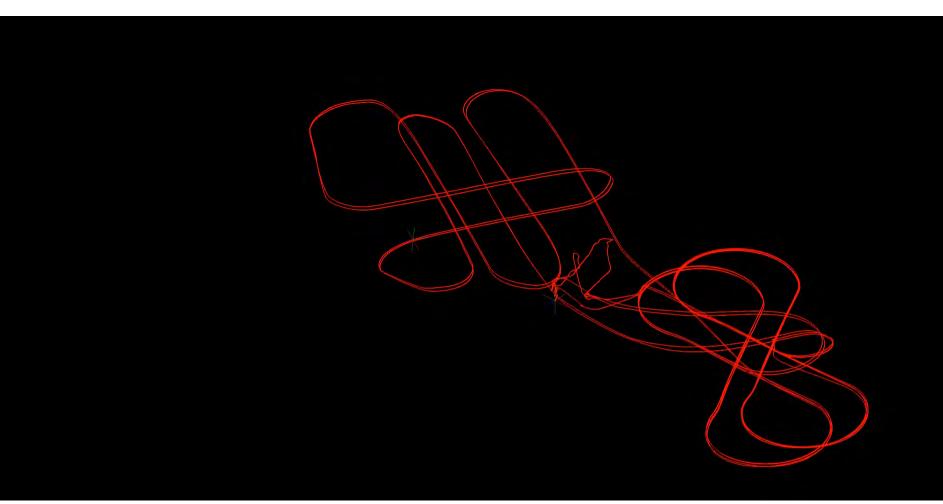
Gross Weight	55 lbs
Useful Load - (Battery + Payload)	34 lbs
Allowable Payload - With Full Endurance*	< 11 lbs
Max Cruise Endurance - With Full Payload	60 Minutes
Max Hover Endurance - With Full Payload	45 Minutes

Original IMU and Replacement

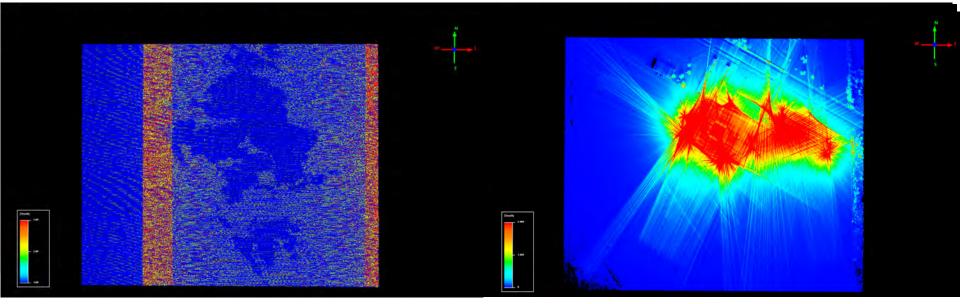
Litef IMU- μ IMU (20 Hz vibration issue)

KVH 1750 IMU

	Litef IMU-µIMU	KVH 1750 IMU
Type of gyro	MEMS	Fiber Optic
Gyro bias stability (°/hr)	6	0.05
Gyro Bias offset (°/hr)	10	2
Angular Random Walk (°/√h)	0.3	0.012
Accel bias offset (mg)	3	2
Velocity random walk (mg/ $\sqrt{ ext{Hz}}$)	0.25	0.12
Data rate	200 Hz	200 Hz
Dimension (Ø x H)	85 x 60 mm	74 x 89 mm
Weight (g)	680	700



Allow static alignment, tactical-grade IMUs

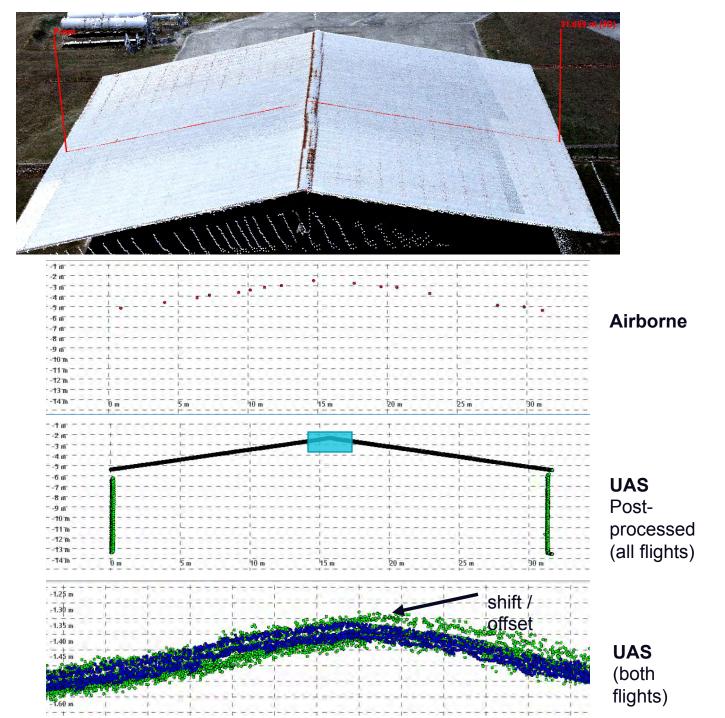

Real time (wifi transmitted) Point Cloud using onboard INS solution

2006 FEMA Airborne Lidar Survey

2018 UAS Lidar Survey

Airborne = 1 pts/m^2

> 3000 pts/m² in overlap zone


3D Structure

page 024

Thank you SCOAR!

<u>Contact:</u> Michael J. Starek School of Engineering and Computing Sciences <u>Michael.Starek@tamucc.edu</u>

