Update on APL-UW Airborne Remote Sensing: Mountain Snow and Coastal Processes

Chris Chickadel (and Gordon Farquharson) Air-sea Interaction and Remote Sensing Department Applied Physics Laboratory

vsics Laboratory | University of Washington |

Compact Airborne System for Imaging the Environment (CASIE): Specifications

Also have fixed visible wavelength cameras, a gimballed camera system, and radiometers.

Compact Airborne System for Imaging the Environment (CASIE): Applications

Radar Antenna Mount (RAM)

Compact Airborne System for Imaging the Environment (CASIE) - RAM

CASIE – Camera Only Platform (COP)

CASIE – Camera Only Platform (COP)

Dual-Beam ATI SAR

Thermal imaging cameras

- Two longwave IR (8-12 micron) uncool cameras
- Single-pass swath is ~3 km
- Georectified w/ IMU and GPS data

Past and Present Projects

Year	Project	Location	Science Hours	Agency
2012	RIVET	NC	50	ONR
2012	СМОР	OR	20	NSF
2012	SWASH	WA / ID	30	DARPA
2013	AirSWOT	CA	20	APL/UW
2013	RIVET II	OR	80	ONR
2013	СМОР	OR	20	NSF
2014	Oso Landslide	WA	6	APL/UW
2014	DopplerScatt	WA	6	NASA/JPL
2014	Snow Temperature	СА	20	NASA
2015	Inner Shelf	CA	20	ONR
2016	Small Boat Detection	WA	20	NATO
2016	DopplerScatt	CA	30	NASA/JPL
2016	Multi-freq. ATI SAR	WA	20	ONR
2016	Snow Temperature	СА	25	NASA
2017	Inner Shelf	СА	80	ONR

Mountain Snow Temperature: Feb 2016, Yosemite NP

- Characterize diurnal snow surface temperature variability
- Model validation
- Address satellite tree/ snow mixed pixel issues
 PI: Jessica Lundquist (Mt.
 Hyd. Lab. – UW CEE)

Sunrise in IR

Visible

T_B Correspondence between airplane and Landsat 8

T_B Correspondence between airplane and ground

- On 6 Feb (cold air pool), ground matches well with nearby point but is consistently 1.5 C colder than meadow average
- On 7 Feb (windy), ground matches well with airborne meadow average
- Point measurements agree better later in the day
- Later identified warm bias in the ground radiometer

Details Matter

Tracks reveal warm snow interior.

Validation spot is in a cold depression.

Ground validation site

-01059

010 500

Inner Shelf DRI – 2015 pilot, 2017 main exp.

- Improved understanding of surf zoneshelf transition
- predictive understanding of remotely sensed ocean surface in the inner shelf

Repeat sampling – Point Sal orbit

Internal waves – Infrared

Internal Waves - SAR

Slicks - SAR

Continued Work

- Inner Shelf field experiment in September/October this year
- Continued work on 2017 snow temperature measurements Yosemite and N. of Lake Tahoe, UAS comparisons
- Continue to improve surface current estimation by using a more detailed microwave scattering model to correct for wave contribution to the mean Doppler shift
- Work underway to calibrate the ATI SAR to estimate radar cross section to apply scatterometry techniques to estimate near surface wind speed and direction (project with JPL)

APL-UW mid-wave IR / EO imaging gimbal DURIP

First flight test, 14 October 2014 – Snohomish River WA

- •9" camera ball, 11lbs
- Full digital (16 bit) image, 10 Hz
- MWIR 640x512 pixels, 35° fov
- EO 2448x2048 pixels, 35° fov
- 2-axis stabilization
- Geo-pointing capability (example movies below)

Ocean Waves

ATI SAR

- The system consists of two Cband dual-channel transceivers built by Artemis Inc., an inertial navigation system, and six antennas
- The radar electronics are mounted in the baggage area of the Cessna 172/182
- Typically fly at around 3000 ft AGL, 90 knots
- Single-pass swath is around 3 km
- SAR data processed with GPUs

Showing 1 km x 1 km box (~ MODIS pixel size)