AIRBORNE MICROWAVE AND INFRARED REMOTE SENSING

Gordon Farquharson and Chris Chickadel

Air-sea Interaction and Remote Sensing Department Applied Physics Laboratory

hysics Laboratory | University of Washington |

Compact Airborne System for Imaging the Environment (CASIE): Specifications

Also have fixed visible wavelength cameras, a gimballed camera system, and radiometers.

Compact Airborne System for Imaging the Environment (CASIE): Applications

Radar Antenna Mount (RAM)

Compact Airborne System for Imaging the Environment (CASIE)

Past and Present Projects

Year	Project	Location	Science Hours	Agency
2012	RIVET	NC	50	ONR
2012	СМОР	OR	20	NSF
2012	SWASH	WA / ID	30	DARPA
2013	AirSWOT	CA	20	APL/UW
2013	RIVET II	OR	80	ONR
2013	СМОР	OR	20	NSF
2014	Oso Landslide	WA	6	APL/UW
2014	DopplerScatt	WA	6	NASA/JPL
2014	Snow Temperature	CA	20	NASA
2015	Inner Shelf	CA	20	ONR
2016	Small Boat Detection	WA	20	NATO
2016	DopplerScatt	CA	30	NASA/JPL
2016	Multi-freq. ATI SAR	WA	20	ONR
2016	Snow Temperature	CA	20	NASA
2017	Inner Shelf	CA	50	ONR

ATI SAR

- The system consists of two Cband dual-channel transceivers built by Artemis Inc., an inertial navigation system, and six antennas
- The radar electronics are mounted in the baggage area of the Cessna 172
- Typically fly at around 3000 ft AGL, 90 knots
- Single-pass swath is around 3 km
- SAR data processed with GPUs

Dual-Beam ATI SAR

Mouth of the Columbia River

- Carlos - Carlos

ATI SAR Interferograms

Phase $(-\pi,\pi)$

Data collected from 14:42 to 15:12 PDT on June 4, 2013 (max. ebb flow around 14:50 PDT)

Wed Aug 21 00:59:44 2013

Mouth of the Columbia River – Internal Hydraulic Jump

Vorticity

2013-06-03 1343 PDT

Remus - Temperature (C)

New River Inlet

Comparison with SWIFT Drifter Measurements

Bathymetric Retrieval

Other Instruments / Applications

Ocean Waves

Ground Water Seepage

Oso Landslide Extent

Terrestrial Mapping: Oso Landslide Topography

SAR-derived Topography

Snow Temperature

Snoqualmie Summit, WA

River Temperature

Algal Blooms

M. rubra bloom mat in the south channel of the Columbia River

Current Work

- Small ship detection project in July at the MCR
- Dual-frequency (L- and C-band) ATI SAR experiment in Fall to test the idea of estimating the Bragg-wave phase velocity contribution to the mean Doppler shift
- Inner Shelf field experiment in September/October next year
- Continue to improve surface current estimation by using a more detailed microwave scattering model to correct for wave contribution to the mean Doppler shift
- Work underway to calibrate the ATI SAR to estimate radar cross section to apply scatterometry techniques to estimate near surface wind speed and direction (project with JPL)

Summary

- Flexible platform for airborne remote sensing
- Limited to inland and coastal areas

