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USGS Coastal and Marine Geology (CMG)

Three science centers
Santa Cruz, CA; St. Petersburg, FL; Woods Hole, MA
Marine seismic research: Santa Cruz and Woods Hole

marine.usqgs.qov

USGS Natural Hazards Mission Area

Driving force is society’s need to assess the probability
and severity of future events

Sudden and extreme geologic events that affect coastal
areas and seabed infrastructure... e.g., earthquakes,
submarine landslides, tsunamis, volcanic eruptions

Overarching Research Goals:

Understand the structure, kinematics, and rates of
deformation along submerged fault systems (e.g.,
marine paleoseismology and tectonic geomorphology)

Understand the causes and consequences of
submarine landslides




Current USGS marine seismic research targets

Southeastern Alaska: Queen
Charlotte Fault tectonics, earthquake,
landslide, and tsunami studies

Southern California: Inner Continental
Borderland fault structure and and
submarine landslide hazards

U.S. Atlantic margin: landslide studies

[Central California: active faults,
sediment transport, and slope
stability studies]

[Cascadia: subduction zone science]
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Southern California




Earthquakes M5+ since 1870

Distributed plate boundary deformation



Research questions

What is the modern geometry of faults in the Catalina Basin,
and which of these structures are active?

How is slip partitioned between the different fault strands?

Are these fault systems related to underlying structures, and
if so, how?
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Integrating 2D
and 3D studies




Earthquakes M5+ since 1870

Distributed plate boundary deformation



Santa Barbara Channel 3D
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Developing 3D capabilities

Advanced fault mapping
3D horizon mapping
Fluid-flow analysis

Fault, chimney attributes

Hosgri 3D study (Kluesner and
Brothers, 2016; right image)

Santa Barbara Channel 3D
(Wright et al., in prep)
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Queen Charlotte-Fairweather Fault

1,200 km-long right-lateral
transform boundary

“Eudes” N P
Very remote and difficult to ..i e @ .i‘%‘

map: 920 km located offshore, « & o3
another 200 km covered by Clulf of Alasiag
glaciers

]

Few-to-no constraints on strain  »
partitioning, fault

segmentation, earthquake ®
recurrence, etc.

7 magnitude 7 and greater
earthquakes since 1900.
Canada’s largest earthquake
ever recorded (1949 M8.1).

Recent earthquakes: 2012
M7.8 Haida Gwaii and 2013
M7.5 Craig: motive for better
understanding




2015-2017 Alaska field campaign

139°0W  138°0'W
= 1 1

2015-2017: 150+ days in the field, 116 days at sea (!)

R/V Solstice (20 day MBES & MCS)

R/V Alaskan Gyre (11 day Chirp & MCS)

R/V Medeia (27 day MBES and MCS)

R/V Norseman (17 day MCS)

R/V Ocean Starr (22 day Chirp & MCS)

R/V Tully (19 day piston coring, video, and sampling)
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Queen Charlotte Fault

Offset glacial sea valley (and a number of other piercing points)

925 + 25 m displacement since glacial retreat ~17 Ka

Slip rates calculated: ~53-56 mm/yr... entire plate boundary
displacement on a single fault?

Recent (2017) core data will help constrain timing of glacial retreat
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Queen Charlotte Fault
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Chatham Strait Fault

Beautiful, mostly continuous record of glacimarine
sedimentation since Last Glacial Maximum

Not much evidence for active faulting
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Improving high-resolution imaging




Isolating the Earth’s response

Geologic Reflection Sparker Convolution After
Coefficient Waveform Into SeismicTrace  Deconvolution
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Resolution—the ability to discern fine-scale
features below the seafloor—is severely limited by
the complex nature of the outgoing sound pulse.
This affects the quality of the data and a scientist’s
ability to interpret it.

Imagery can be greatly improved and greater
information garnered if each outgoing sound pulse
could be completely characterized and removed
from recorded data using deconvolution.

Two deconvolution approaches: ‘

Estimated (predictive; easier and commonly used) L Sea Surface
Deterministic (known; more difficult and less Boord
commonly used)

-~ .

Recelver

Primary (P)

Source Ghost (SG)
Receiver Ghost (RG)
Source and Receiver

Significant problem with high-resolution seismic is Shasts (850) TR
the ghost — a reflection at the air/water interface.
= USGS

e for a changing workd




One ghost
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Who you gonna call?




“Ghostbuster” deterministic deconvolution (in development)
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“Ghostbuster” V1.0 design, tested December, 2016

Primary Pulse




Examples of Sparker Wavelet Processing

2014 Southern California Sparker MCS (~6 kJ and 48 channels)

Without wavelet processing

' \— PN

With approximated wavelet
processing




Examples of Sparker Wavelet Processing

2014 Southern California Mini-Sparker MCS (~700 J and 48 channels)

Without wavelet processing Wavelet processing

Clearer reflector
contacts

Infille




Examples of Sparker Wavelet Processing

2014 Southern California Mini-Sparker MCS (~700 J and 48 channels)

Without wavelet processing

Repeating
Seafloor

Wavelet processing

Clearer
Seafloor
Contact
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Sparker seismic stratigraphy
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Sparker fault mapping
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