

Radiated Noise of Research Vessels

Greening the Research Fleet Workshop 10 January 2012

Christopher Barber Applied Research Laboratory Penn State University

Ship Radiated Noise

- What makes noise?
 - Propulsion
 - Machinery
 - Hydrodynamic sources, transient sources and transducers
- How can you build and operate a quiet ship?
 - Propulsor and hull design
 - Noise control technologies
 - Operational awareness
- Why care?
 - Environmental Impact
 - Shipboard Habitability
 - ICES
 - Impact on Shipboard Mission Systems (self-noise)
- How to measure it ?
 - Acoustic ranges, portable systems
 - Shallow water measurements

Radiated Noise Sources

- Sources
 - Propulsor Noise
 - Motor and Aux Machinery Noise
 - Sea connected systems (pumps)
 - Transient sources
 - incl. active acoustic transponders
 - Hydrodynamic sources

• Paths

- Direct acoustic propagation
- Shaft line propagation
- Sound/structure interaction
- Diffracted paths
- Tanks

Paths for Machinery Noise

- First Structureborne
- Secondary Structureborne
- U/W Radiated
 Noise

Sea Connected Systems – Fluid-coupled paths

Figure courtesy of Noise Control Engineering

Propeller Noise

 Cavitation typical dominates broadband ship signature

Mitigation:

- Design prop for maximum cavitation inception speed
- Restrict noise-sensitive

Non-propulsion flow-related noise

Hull and appendage cavitation

- Rudders, Struts
- Fairings, Bilge Keels

Bow wave transients

- Acoustic source
- Bubble sweepdown

Mitigation: good hydrodynamic design

Sonar Self-Noise Sources

- Hull-mounted sonars
 - Bow-area flow noise
 - Bow wave transient
 - Flow-induced structural excitation
- Installation details

- window material and attachment mechanism
- fairings
- Propagation of external ship sources into sonar
 - machinery / prop noise via hull grazing path
 - Bottom reflected path

Impact - Environmental Noise

- Studies ongoing to assess impact of anthropogenic noise on marine mammals
 - general shipping noise
 - Local radiated noise
 - Science mission sources

Sound Source	SPL dBre 1µPa @1m	Ping Energy (dB re 1µPa ² *s)	Ping Duration	Duty Cycle (%)	Peak Frequency (Hz)	Band Width (Hz)	Direct- ionality
Underwater Nuclear Device (30 kilo-ton)	328	338	10 s	Inter- mittant	Low	Broad	Omni
Ship Shock Trial (10,000 lb TNT)	299	299	1 s	Inter- mittent	Low	Broad	Omni
Military Sonar (SURTASS/LFA)	235	243	6 – 100 s	10	250	30	Horizontal
Research Sonar (ATOC Source)	195		20 minutes	8	75	37.5	Omni
Acoustic Harrassment Device	185	185	0.5 - 2 s	50	10,000	600	Omni
Multibeam (Echosounder Hull-mounted)	235	218	20 ms	0.4	12,000	Narrow	Vertical
Research Sonar (RAFOS float)	195		120 s	small	250	100	Omni
Fishing Vessel 12 m long (7 knots)	150		CW	100	300	250- 1000	Omni

ICES Criteria for Fisheries RV's

From Mitson, "UNDERWATER NOISE OF RESEARCH VESSELS, 1995

38 kHz

100

Radiated Noise Measurement

Objective: <u>Quantify</u> ship radiadted noise to...

- Demonstrate compliance
 - noise criteria, design goals, contractual requirements
- Asses Environmental Impact
- Identify unique characteristics (radiated noise <u>signature</u>)
 - impact on internal sensors and systems
 - Interference in multi-static experiments
 - detection, classification and localization in naval applications

Acoustic signature monitoring

Establish baseline for condition – based maintenance, problem identification, diagnostics

Definitions

- Radiated Noise
 - vessel noise that is transmitted into the water and can be detected by off-board receivers
 - Typically reported as One Third octave (OTO) Band
 - Narrowband (1 HZ) data used to characterize machinery tonals
- Radiated Noise Source Level
 - Equivalent simple source (omnidirectional monopole) level

SL dB re 1 µPa @ 1m

- Back-propagated to 1m assuming spherical spreading from a <u>far field</u>, <u>free-field</u> measurement
- Platform Noise
 - Ship noise that can be detected by acoustic or vibration sensors
 - Not necessarily detectable as radiated noise
- Sonar Self-Noise
 - Received acoustic levels in the output of onboard system receiving band(s) due to self-generated platform noise sources

Figure 13. Comparison of noise levels between two vessels built in the 1960's and two built in the 1990's, all free-running at 11 knots.

Example Radiated Noise Data

Figure 14. "Explorer" towing a bottom trawl at two speeds. Note that the trawl noise is less than the vessel noise below 500 Hz.

Acquisition System Considerations

• Sensors

- Sensitivity, directivity, dynamic range
- Signal conditioning
 - High Pass, Low Pass, anti-aliasing
 - Gain
 - Grounding / isolation

Acquisition

- Sampling rate / bandwidth
- Throughput
- Data storage

• Tracking

- Accurate position vs time
- Environmental Data
 - CTD / SVP
 - Bathymetry
 - Sea conditions
 - wind

Deep Water Fixed Range Measurements

- Resource intense
 - Logistics
 - Instrumentation
 - Personnel
 - Assets
- Moving Source + Moving Receiver
 - Location, location, location...

Ship-based Measurements

- **Resource intense**
 - Logistics —
 - Instrumentation
 - Personnel
 - Assets
- **Moving Source + Moving Receiver**
 - Location, location...
 - RANGE = Source Level
 - Tracking

Test Vessel Aspect

Shallow Water Measurements

 Simple source representation coupled with simplified propagation assumptions do not capture sound field variability for real sources in shallow water

